Local $T_0$ and $T_1$ quantale-valued preordered spaces

Local $T_0$ and $T_1$ quantale-valued preordered spaces

In this paper, we characterize explicitly the separation properties $T_0$ and $T_1$ at a point p in the topological category of quantale-valued preordered spaces and investigate how these characterizations are related. Moreover, we prove that local $T_0$ and $T_1$ quantale-valued preordered spaces are hereditary and productive.

___

  • Adamek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley & Sons, New York, 1990.
  • Baran, M., Separation properties, Indian J. Pure Appl. Math., 23 (1991), 333–341.
  • Baran, M., The notion of closedness in topological categories, Comment. Math. Univ. Carolin., 34(2) (1993), 383–395.
  • Baran, M., Generalized local separation properties, Indian J. Pure Appl. Math., 25(6) (1994), 615–620.
  • Baran, M., Altındi¸s, H., $T_2$ objects in topological categories, Acta Math. Hungar., 71(1-2) (1996), 41–48. https://doi.org/10.1007/BF00052193
  • Baran, M., Separation properties in topological categories, Math. Balkanica, 10(1) (1996), 39–48.
  • Baran, M., $T_3$ and $T_4$-objects in topological categories, Indian J. Pure Appl. Math., 29(1) (1998), 59–70.
  • Baran, M., Completely regular objects and normal objects in topological categories, Acta Math. Hungar., 80(3) (1998), 211–224. https://doi.org/10.1023/A:1006550726143
  • Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Appl. Categ. Structures, 10(4) (2002), 403–415. https://doi.org/10.1023/A:1016388102703
  • Baran, M., Kula, M., A note on connectedness, Publ. Math. Debrecen, 68 (2006), 489–501.
  • Baran, M., Closure operators in convergence spaces, Acta Math. Hungar., 87(1-2) (2000), 33-45. https://doi.org/10.1023/A:1006768916033
  • Baran, M., Al-Safar, J., Quotient-reflective and bireflective subcategories of the category of preordered sets, Topology and its Applications, 158(15) (2011), 2076-2084. https://doi.org/10.1016/j.topol.2011.06.043
  • Baran, M., Kula, S., Erciyes, A., $T_0$ and $T_1$ semiuniform convergence spaces, Filomat, 27(4) (2013), 537–546. https://doi.org/10.2298/FIL1304537B
  • Baran, M., Kula, S., Baran, T. M., Qasim, M., Closure operators in semiuniform convergence spaces, Filomat, 30(1) (2016), 131-140. https://doi.org/10.2298/FIL1601131B
  • Denniston, J. T., Melton, A., Rodabaugh, S. E., Solovyov, S. A., Lattice-valued preordered sets as lattice-valued topological systems, Fuzzy Sets and Systems, 259 (2015), 89–110. https://doi.org/10.1016/j.fss.2014.04.022
  • Dikranjan, D., Giuli, E., Closure operators I, Topology and its Applications, 27(2) (1987), 129–143. https://doi.org/10.1016/0166-8641(87)90100-3
  • Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
  • Duquenne, V., Latticial structures in data analysis, Theoretical Computer Science, 217 (1999), 407–436.
  • Flagg, R. C., Quantales and continuity spaces, Algebra Universalis, 37(3) (1997), 257–276. https://doi.org/10.1007/s000120050018
  • Goubault-Larrecq, J., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, Cambridge, 2013. https://doi.org/10.1017/CBO9781139524438
  • Hofmann, D., Seal, G. J., Tholen, W., Monoidal Topology: A Categorical Approach to Order, Metric, and Topology, Cambridge University Press, Cambridge, 2014.
  • Jager, G., A category of L-fuzzy convergence spaces, Quaest. Math., 24(4) (2001), 501–517. https://doi.org/10.1080/16073606.2001.9639237
  • Jager, G., Probabilistic approach spaces, Math. Bohem., 142(3) (2017), 277–298. https://doi.org/10.21136/MB.2017.0064-15
  • Jager, G., Yao, W., Quantale-valued gauge spaces, Iran. J. Fuzzy Syst., 15(1) (2018), 103–122. https://doi.org/10.22111/IJFS.2018.3581
  • Jager, G., The Wijsman structure of a quantale-valued metric space, Iran. J. Fuzzy Syst., 17(1) (2020), 171–184. https://doi.org/10.22111/IJFS.2020.5118
  • Klement, E. P., Mesiar, R., Pap, E., Triangular Norms, Springer, Dordrecht, 2000.
  • Kula, M., Maraşlı, T., Özkan, S., A note on closedness and connectedness in the category of proximity spaces, Filomat, 28(7) (2014), 1483-1492. https://doi.org/10.2298/FIL1407483K
  • Qasim, M., Özkan, S., The notions of closedness and D-connectedness in quantalevalued approach spaces, Categ. Gen. Algebr. Struct. Appl., 12(1) (2020), 149–173. https://doi.org/10.29252/CGASA.12.1.149
  • Scott, D. S., Domains for Denotational Semantics, Proc. 9th. Int. Coll. on Automata, Languages and Programming, (Aarhus, 1982), 577–610, Lecture Notes in Comput. Sci., 140, Springer, Berlin-New York, 1982. https://doi.org/10.1007/BFb0012801
  • Zhang, Q. Y., Fan, L., Continuity in quantitative domains, Fuzzy Sets and Systems, 154(1) (2005), 118–131. https://doi.org/10.1016/j.fss.2005.01.007