NOAA AVHRR VERİLERİNİ KULLANARAK TÜRKİYE’DE BİTKİ ÖRTÜSÜNÜN İZLENMESİ VE İNCELENMESİ

Türkiye bulunduğu coğrafi konum itibari ile dikkate değer ölçüde biyolojik çeşitliliğe sahip bir ülkedir. Orman ve otsu bitkiler ana bitkisel formasyonları meydana getirirken, bir çok diğer tipe de ev sahipliği yapar. Farklı bitkisel formasyonlar ülke genelinde iklim ve topografik koşulların etkisinde çeşitlilik göstermiştir. Çalışmamızın ana amacını National Oceanic & Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) verilerini kullanarak Türkiye’deki bitki örtüsü durumunun değerlendirilmesi oluşturmaktadır. Bu amaçla makalemizde ülkemizin farklı bölgelerinden seçilmiş, çeşitli bitki türlerinin 1992,1993 ve 1995 yıllarındaki durumları ortaya konulmaya çalışılmıştır. Türkiye’nin ulusal ve bölgesel ölçekte bitki örtüsü durumunu ortaya koymak amacıyla AVHRR verileri 1992-1995 dönemleri arasını içerisine alan NFBİ değerlerine dönüştürülerek bitkisel aktivite durumları incelenmiştir. Yüksek biomas karakterine sahip orman alanları yıl boyunca yüksek indeks değerine sahip olurken, tam tersi olarak düşük biomas özellikleri nedeniyle otsu bitkiler daha düşük indeks değerleri ile ifade edilmektedir. Otsu bitkiler İç Anadolu’da Mayıs-Haziran, Doğu Anadolu’da ise Haziran-Temmuz aylarında kısa süreli olarak yüksek NFBİ değerleri göstermektedir

An Examination and Monitoring Vegetation Conditions in Turkey Using NOAA AVHRR Data

Turkey represents a considerable range of biodiversity due to its location in the World. Several types of forests and grasslands are the main vegetation formations of Turkey, but there are many other secondary vegetation areas in the country. The distribution of the different formations is controlled largely by climate and topography. The main objective of the study is to examine the utility of NOAA AVHRR data (which were collected for the years of 1992, 1993 and 1995) for monitoring vegetation conditions in Turkey. The NDVI is calculated and the data are composited for selected temporal periods to evaluate vegetation state. The results showed that the frosted areas, which have larger amount of biomass, represented high NDVI; on the other hand grassland areas had low NDVI. Grassland areas reached peak NDVI level during at the and of may and beginning of June in the Interior Anatolia, in contrast Eastern Anatolia has reached the peak NDVI at the end of June

___

  • Atalay, İ., (1994) Türkiye Vejetasyon Coğrafyası, Ege Üniversitesi Basımevi, İzmir.
  • Campbell, J. B., (1987) Introduction to Remote Sensing, the Guilford press, New York.
  • Cihlar, J.; St. Laurent, L.; Dyer, J. A., (1991) “Relation between the Normalized Difference Vegetation Index and ecological variables”, Remote Sensing of Environment, 35, 279-298.
  • Darkot, B.; Tuncel, M., (1995) Ege Bölgesi Coğrafyası (3. Baskı), İÜ Edebiyat Fakültesi Basımevi, İstanbul.
  • White, M. A.; Thornton, P. E.; Running, S. W., (1997) “A Continental phenology model for monitoring responses to interannual climatic variability”, Global Biochemical Cycles, 11(2), 217-234.
  • De Buers, K. M.; Henebry, G. M., (2005) “Land surface phenology and temperature variation in the International Geosphere
  • Biosphere Program high-latitude transects”, Global Change Biology, 11, 779-790. De Buers, K. M.; Henebry, G. M., (2004) “Land surface phenology and climatic variation and institutional change;
  • Analyzing agricultural land cover change in Kazakhstan”, Remote Sensing of Environment, 497-509. Di, L.; Rundquist, D. C.; Luoheng, H., (1994) “Modeling relationships between NDVI and precipitation during vegetative growth cycles”, International Journal of Remote Sensing, 15(10), 2121-2136.
  • Güngördü, M. (1999) Marmara Bölgesinin Bitki Coğrafyası, İstanbul Üniversitesi Basımevi, İstanbul.
  • Goward, S. N.; Markham, B.; Dye, D. G.; Dulaney, W.; Yang, J., (1991) “Normalized difference vegetation index measurements from AVHRR”, Remote Sensing of Environment, 35, 257-277.
  • Holben, B. N., (1986) “Characteristics of maximum-value composite images from temporal AVHRR data”, International Journal of Remote Sensing, 7, 1417-1434.
  • Justice, C.; Townshend, J. R.; Kalb, V. L., (1991) “Representation of vegetation by continental data sets derived NOAA
  • AHHRR data”, International Journal of Remote Sensing, 12(5), 999-1021.
  • Lyon, G.; Yuan, D.; Lunetta, R. S.; Elvidge, C. D., (1998) “A change detection experiment using vegetation indices”,
  • Photogrammetric Engineering and Remote sensing, 62(2), 143-150. Malingreau, J. P., (1986) “Global vegetation dynamics, satellite observations over Asia”, International Journal of Remote Sensing, 7, 1121-1146.
  • Marsh, S. E.; Walsh, J. L.; Lee, C. T.; Beck, L. R.; Hutchinson, C. F., (1992) “Comparison of multi-temporal NOAA
  • AVHRR and SPOT-XS satellite data for mapping land cover dynamics in the west African Sahel”, International Journal of Remote Sensing, 13(16), 2997-3016.
  • Reed, B. C.; Brown, J. F.; VanderZee, D.; Loveland, T. R.; Merchant, L. W.; Ohlen, D. O., (1994) “Measured phonological variability from satellite imagery”, Journal of Vegetation Sciences, 5, 703-714.
  • Tucker, C., (1979) “Red and photographic infrared linear combination for monitoring vegetation”, Remote sensing of Environment, 8, 127-150.
  • Yang, W.; Yang, L.; Merchant, J. M., (1997) “An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska,
  • U.S.A.”, International Journal of Remote Sensing, 18 (10):2161-2180. http://edcdaac.usgs.gov/1KM/comp10d.asp