Antibiyotik etken maddelerinin metanojenik aktivite üzerinde kronik etkileri

Yıllık üretimi tüm dünyada yaklaşık 500 tonu bulan antibiyotikler, konvansiyonel arıtma teknolojileri ile giderime dirençli özellikleri ile ön plana çıkmaktadırlar. Antibiyotik içeren evsel ve hastane atıksuları, arıtma tesislerinde bulunan biyolojik reaktörlerde kısmı olarak ayrışarak ya da hiçbir değişime uğramadan doğrudan alıcı ortama deşarj edilmektedirler. Antibiyotik konsantrasyonları daha yüksek mertebelerde bulunan ilaç endüstrisi atıksuları ise tesislerde fiziko-kimyasal teknolojiler ile arıtılmaktadır. Miktarları her geçen gün ekosistemde artan bu ilaç etken maddeleri, doğada antibiyotiğe dirençli patojen organizmaların artışına sebep olmakta ve bu durum halk sağlığı için büyük bir tehdit oluşturmaktadır. Bu çalışmada yüksek KOİ ve inhibitör madde içeriğiyle ön plana çıkan ilaç endüstrisi atıksularının anaerobik arıtımında metanojenik aktivite üzerindeki kronik etkisi incelenmiştir. Bu kapsamda dizayn edilen spesifik metanojenik aktivite testleri, çalışma kapsamında seçilen üç farklı antibiyotiğin kronik inhibisyon profillerini ortaya koymuştur. Bu çalışmada kullanılan sülfometaksazol, eritromisin ve tetrasiklin antibiyotiklerinin anaerobik degredasyonun son adımı olan metanojenesis üzerindeki kronik etkilerinin farklı olduğu görülmüştür. Sülfometaksazol ile beslenen sistemin çamur numunelerinde metanojenik aktivite antibiyotik konsantrasyonu ile paralel artarken, eritromisin ve tetrasiklin beslenen sistemlerde metanojenik aktivite düşmüştür. Sisteme eritromisin beslemesi kesildiğinde metanojenik aktivite düşmeye devam etmiştir. Bu etken maddenin anaerobik sistemlerdeki kronik etkisini dönüşümsüz inhibisyon modeli ile açıklanabilmektedir. Anaerobik reaktöre tetrasiklin beslemesi kesildikten sonra ise metanojenik aktivite artmıştır. Tetrasiklinin anaerobik sistemlerdeki kronik etkisi dönüşümlü inhibisyon modeli ile açıklanabilmektedir. Her üç antibiyotiğin etkisi homoasetojenler ve hidrogenotrofik metanojenler üzerinde asetoklastik türlere oranla daha fazla olmuştur.

___

  • American Public Health Association (APHA), (2005). Standard methods for the examination of water and wastewater, 21st ed., Washington, DC.
  • Amin, M.M., Zilles, J. L., Greiner, J., Charbonneau, S., Raskin, L. and Morgenroth, E., (2006). Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater, Environmental Science & Technology, 40, 3971-3977.
  • Angenent, L.T., Sung, S.W. and Raskin, L., (2002). Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste, Water Research, 36, 18, 4648-4654.
  • Chelliapan, S., Wilby, T. and Sallis, P.J., (2006). Performance of an upflow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Research, 40, 3, 507-516.
  • Colleran, E., Concannon, F., Goldem, T., Geoghegan, F., Crumlish, B., Killilea, E., Henry, M. and Coates, J., (1992). Use of methanogenic activity tests to characterize anaerobic sludges, screen for anaerobic biodegradability and determine toxicity thresholds against individual anaerobic trophic groups and species, Water Science and Technology, 25, 31-40.
  • Drillia, P., Dokianakis, S.N., Fountoulakis, M.S., Kornaros, M., Stamatelatou, K. and Lyberatos, K.G., (2005). On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole, Journal of Hazardous Materials, 122, 259- 265.
  • Gartiser, S., Urich, E., Alexy, R. and Kummerer, K., (2007). Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes, Chemosphere, 66, 1839-1848.
  • Griffin, M.E., McMahon, K.D., Mackie, R.I. and Raskin, L., (1998). Methanogenic population dynamics during start-up of anaero- bic digesters treating municipal solid waste and biosolids. Biotechnology and Bioengineering, 57, 342-355.
  • Hartig, C., Storm, T. and Jekel, M., (1999). Detection and identification of sulphonamide drugs in municipal wastewater by liquid chromatography coupled with electrospray ionization tandem mass spectrometry, Journal of Chromatography A, 854, 163-173.
  • Ince, O., Anderson, G.K., Kasapgil, B., (1995). Control of organic loading rate using the specific methanogenic activity test during start-up of an anaerobic digestion system, Water Resources, 29, 349-355.
  • Kim, S., Eichhorn, P., Jensen, J.N., Weber, A.S. and Aga, D.S., (2005). Removal of antibiotics in wastewater: Effect of hydraulic and solid retention timeson the fate of tetracycline in the activated sludge process, Environmental Science & Technology, 39, 5816-5823.
  • Kummerer, K., (2004). Pharmaceuticals in the Environment, eds. Kummerer, K., 2nd Ed. Springer, Verlag.
  • Sanz, J.L., Rodriguez, N. and Amils, R., (1996). The action of antibiotics on the anaerobic digestion process, Applied Microbiology and Biotechnology, 46, 587-592.
  • Sedlak, D.L., Pinkston, K. and Huang, C.H., (2005). Occurrence survey and of pharmaceutically active compounds, Denver, CO: Awwa Research Foundation.
  • Speece, R.E., (1996). Anaerobic Biotechnology for Industrial Wastewaters, Archae Press, Tenesse, USA.
  • Sponza, D.T. and Demirden, P., (2007). Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes, Separation and Purification Technology, 56, 108-117.
  • Stockholm County Council, (2005). Environmentally classified pharmaceuticals, Miljöavdelningen (Department of the environment, www. anusinfo.se/miljoklassificering), Stockholm, Sweden.
  • Stone, J.J., Clay, S.A. Zhu, Z., Wong, K.L., Porath, L.R., Spellman, G.M., (2009). Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion, Water Research, 43, 4740-4750.
  • Sweetman, S.C. (eds.), (2009). Martindale: The complete drug reference, 36th Edition, Pharmaceutical Press, London, UK.