Sıçan beyin G proteinlerinin karakterizasyonu

Heterotrimerik guanin nükleotit bağlayan proteinler (G proteinler) hücre sinyal iletiminde önemli rol oynamaktadır. Hücre zarının sitoplazmaya bakan yüzeyinde yerleşik G proteinleri $alpha$, β, γ alt birimlerinden oluşmaktadır. $alpha$ alt birimi guanin nükleotit (GTP ve GDP) bağlama ve GTP'yi hidrolizleme (GTPaz) etkinliğine sahiptir. G proteinleri özgünlüklerini belirleyen $alpha$ alt birimine göre Gs,Gi,Gq ve G12 olmak üzere 4 büyük alt gruba ayrılmıştır. Bu çalışmada sıçan beyninde GTP bağlama etkinliğini ölçmek için uygun koşullar belirlendi. Sıçan beyninden hazırlanan ham zar (P30) ve zar özüt (S142) kesimlerinde GTP bağlama etkinliği GTP'nin hidrolizlenmeyen analogu [35 S] GTPγS ile ölçüldü. GTPγS bağlama etkinliğinin zamana ve protein derişimine bağlı olarak arttığı ve 60mM MgCl2 varlığında maksimum olduğu saptanmıştır. Western emdirim yöntemi kullanılarak beyinde G$alpha$ ve β γ altbirimleri, beyin korteksinde G$alpha$o ve G$alpha$i proteinlerinin ekspresyonları gösterilmiştir.

Characterization of G proteins in rat brain

Background and Design.- Heterotrimeric guanine nucleotide binding protein (G proteins) play a central role in regulation of signal transmission in the cell. G proteins which are localized in the inner surface of the cell membrane consist of $alpha$, β- and γ- subunits. The $alpha$-subunit which binds guanine nucleotides (GTP and GDP) contains intrinsic GTPase activity. G proteins are divided into four families based on their $alpha$-subunits which confer their specifity: G$alpha$s, G$alpha$i, G$alpha$q and G$alpha$12. This study was designed to measure GTP binding activity and G protein expression in rat brain. Membrane extracts were prepared from whole brain and brain cortex. GTP binding activity in crude membrane fractions (P30) and membrane extracts (S142) was measured using [35S] GTPγS, the non-hydrolyzable analogue of GTP. Conclusion.- We observed that [35S] GTPγS binding increased with time and with increasing amounts of membrane proteins. We also demonstrated that GTPγS binding was strongly magnesium dependent and was maximum at 60mM MgCl2 concentration. The presence of G protein $alpha$ and βγ subunits in whole brain and of G$alpha$o and G$alpha$i in brain cortex was shown by Western blot analysis.

___

  • 1. Morris A, Malbon CC. Physiological regulation of G protein-linked signaling. Physiological Reviews 1999; 79: 1373-1430.
  • 2. Vaughan M. Signalling by heterotrimeric G proteins Minireview Series. J.Biol.Chem. 1996; 273: 667-672.
  • 3. Gilman AG. G proteins: Transducers of receptorgenerated signals. Annu. Rev. Biochem. 1987; 56: 615-649.
  • 4. Hermans E. Biochemical and pharmacological control of multiplicity of coupling at G-protein-coupled receptors. Pharmacology and Therapeutics 2003; 99: 25- 44.
  • 5. Mesters JR, Hogg T, Hilgenfeld R. G Proteins. Encylopedia of Life Sciences 2001; 1-6.
  • 6. Milligan G. Signal sorting by G-protein-linked receptors. Adv. Pharmacol. 1995; 32: 1-29.
  • 7. Chen J, Iyengar R. Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J.Biol.Chem. 1993; 267: 12253-12256.
  • 8. Nathanson NM. Muscarinic acetylcholine receptors. Encyclopedia of Life Sci. 2001; 1-6,
  • 9. Milligan G, White JH. Protein-protein interactions at G -protein coupled receptors. Trends in Pharmacol. Sci. 2001; 22: 513-518.
  • 10. Hulme EC. Interaction of muscarinic acethylcholine receptors with G proteins. In Receptor-Effector Coupling, A Practical approach, Oxford, IRL press, 1990; 1-100.
  • 11. Lowry O, Rosebrough H, Farr Al, Randall RJ .Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193: 265-275.
  • 12. Northrup JK, Smigel MD, Gilman AG. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. J. Biol. Chem. 1982; 257: 11416-11423.
  • 13. Laemli UK. Cleaveage of structral proteins during the assembly of the head + of bacteriophage T4. Nature 1970; 278: 364-365.
  • 14. Mumby SM, Gilman AG. Synthetic peptide antisera with determined specifity for G- protein α or β subunits. Johnson, R.A., Corbin, JD. (Ed): In Methods. Enzymol. Sandiego Academic Press, 1991; 195: 215-223.
  • 15. Hombuger V, Brabet P, Audigier Y, Pantaloni C, Bockaert J, Rouot P. Immunological localization of the GTP binding protein Go in different tissues of vertebratesand invertebrates. Mol. Pharmacol 1987; 31: 313-319.
  • 16. Grant KR, Harnett MM, Milligan G, Harnett W. Characterization of heterotrimeric G-proteins in adult Acanthocheilonema vitae. Biochem J. 1996; 320: 459-466.
  • 17. Otto H, Buchner K, Beckmann R, Hilbert R and Hucho F. GTP-binding proteins in bovine brain nuclear membranes. Neurochem.Int. 1992; 21: 409-414.
  • 18. Angela G-J, Richard CF, Bengt W and Johan F. Autoradiographic Characterisation of [35S] GTPγS Binding Sites in Rat Brain. Neurochem. Res. 1997; 22, 8: 1055-1063.
  • 19. Brann MR, Collins RM, Spiegel A. Localization of mRNAs encoding the α subunits of signal-transducing G proteins within rat brain and among peripheral tissues. FEBS Letters 1987; 222: 191-198.