Protein oksidasyonunun ana mekanizmaları

Proteinlerin reaktif türevler tarafından oksidatif modifikasyonu bir dizi bozukluğun ve hastalığın etyolojisi veya ilerlemesinde rol oynar. Yazımızda protein oksidasyonunun temel mekanizmalarını özetlemeye çalıştık. Proteinlerin oksidasyonu aromatik amino asit bakiyelerinin nitratlaşmasına, tiyol gruplarının oksidasyonuna, ileri oksidasyon protein ürünlerinin oluşmasına ve bazı amino asit bakiyelerinin karbonil türevlerine dönüşümüne yol açar. Oksidasyon aynı zamanda polipeptit zincirinin yarılmasına ve çapraz bağlı protein agregatlarının oluşumuna yol açabilir. Ayrıca, proteinlerdeki fonksiyonel gruplar poliansatüre yağ asitlerinin oksidasyon ürünleri ve glikasyon/glikooksidasyon reaksiyonları sonucu oluşan karbonhidrat türevler ile reaksiyona girerek inaktif türevleri oluştururlar. Proteinlerin konformasyonel değişimi; agregasyon ve parçalanmadaki artışı yanı sıra sekonder ve tersiyer yapının bozulmasında da artışa yol açarak proteinlerin proteolize yatkınlığına ve normal fonksiyonlarında azalmaya yol açar.

Basic mechanisms of protein oxidation

Background.- The oxidative modification of proteins by reactive species is implicated in the etiology or progression of a panoply of disorders and diseases. We summarize here the basic mechanisms of protein oxidation. Oxidation of proteins can lead to nitration of aromatic amino acid residues, oxidation of thiol groups, advanced oxidation protein products formation, and conversion of some amino acid residues to carbonyl derivatives. Oxidation can lead also to cleavage of polypeptide chain and to formation of cross-linked protein aggregates. Furthermore, functional groups of proteins can react with oxidation products of polyunsaturated fatty acids and with carbohydrate derivatives (glycation/glycoxidation) to produce inactive derivatives. Alterations in protein conformations can lead to increased aggregation, fragmentation, distortion of secondary and tertiary structure, susceptibility to proteolysis, and diminution of normal function.

___

  • 1. Shacter E. Protein oxidative damage. Methods Enzymol 2000; 319: 428-436.
  • 2. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000; 32: 307-326.
  • 3. Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 1999; 27: 1151-1163.
  • 4. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med 2003; 9: 169-176.
  • 5. Swallow AJ. Radiation chemistry of organic compounds. New York, John Wiley & Sons, 1960; 211-224.
  • 6. Garrison WM, Jayko ME, Bennett W. Radiation-induced oxidation of protein in aqueous solution. Rad Research 1962; 16: 483-502.
  • 7. Schuessler H, Schilling K.Oxygen effect in radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol. 1984; 45: 267-281.
  • 8. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003; 25: 207-218.
  • 9. Stadtman ER. Protein modification in aging. J Gerontol 1988; 43: 112-120.
  • 10. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329: 23-38.
  • 11. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324: 1-18.
  • 12. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002; 32: 790-796.
  • 13. Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000; 899: 191- 208.
  • 14. Bindoli A, Rigobello MP. Mitochondrial thioredoxin reductase and thiol status. Methods Enzymol, 2002; 347: 307-316.
  • 15. Netto LES., Kowaltowski AJ, Castilho RF, Vercesi AE. Thiol enzymes protecting mitochondria against oxidative damage. Methods Enzymol 2002; 348: 260-270.
  • 16. Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effect of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 1996; 385: 63-66.
  • 17. Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo. FEBS Lett 1997; 411: 157-160.
  • 18. Ischiropoulos H, Al-Mehdi AB. Peroxynitrite-mediated oxidative protein modification. FEBS Lett 1995; 364: 279-282.
  • 19. Szabo C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 1996; 6: 79-88.
  • 20. Ter Steege JCA, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 1998; 25: 953-963.
  • 21. Alderman CJJ, Shah S, Foreman JC, Chain BM, Katz DR. The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic Biol Med 2002; 32: 377-385.
  • 22. Witko V, Nguyen AT, Descamps-Latscha B. Microtiter plate assay for phagocyte-derived taurine-chloramines. J Clin Lab Anal, 1992; 6: 47-53.
  • 23. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49: 1304-1313.
  • 24. Witko-Sarsat V, Friedlander M, Nguyen Khoa T, Capeillere-Blandin C, Nguyen AT, Canteloup S, Dayer JM, Jungers P, Drüeke T, Descamps-Latscha B. Advanced oxidation protein products as a novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol, 1998; 161: 2524-2532.
  • 25. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272: 20313-20316.
  • 26. Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids 2003; 25: 221-226.
  • 27. Çakatay U, Telci A. Oksidatif protein hasarı ve saptanmasında kullanılan marker’lar. İst Tıp Fak Mecmuası 2000; 63: 314-317.
  • 28. Koppenol WH. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 1998; 25: 385-391.
  • 29. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Free Radic Biol Med 1998; 25: 392-403.
  • 30. Kayalı R, Telci A, Çakatay U, Karaca Ç, Akçay T, Sivas A, Altuğ T. Oxidative protein damage parameters in plasma in chronic experimental diabetes in rats. Eur J Med Res 2003; 8: 307-312.
  • 31. Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki JM, Dean RT. Long-lived reactive species on free radical-damaged proteins. Biochem J 1992; 282: 621-624
  • 32. Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 1993; 289: 743-749.
  • 33. Gieseg S, Duggan S, Gebicki JM. Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochem J 2000; 350: 215-218.
  • 34. Headlam HA, Davies MJ. Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals. Free Radic Biol Med 2003; 34: 44-55.