Akut puromycine aminonucleoside nefrozda proteinüri, kreatinin klirensi, serum albumin değerleri ile böbrek cisimciğindeki ultrastrüktürel değişiklikler ve slit-pore sayısı arasındaki ilişkiler

Biz Puromycine Aminonucleosiden (PAN)-‘nin Wistar sıçanlara subkutanöz enjeksiyonu ile (1,67 mg/100 gr), proteinüri gelişmeden önceki “proteinüri öncesi” ve belirgin proteinüri gelişmiş “akut nefroz” sıçan gruplarında Böbrek cisimciği deki ultrastrüktürel değişiklikler ve slit-porelerdeki sayısal farklılıklar ile gelişen proteinüri ve hidrolik permeabilite arasındaki ilişkiyi araştırdık. Proteinüri öncesi grupta podositlerde hipertrofi, mikroflament artışı, podosit ayakçıkları kaynaşması, glomeruler bazal membran kalınlaşması ve invaginasyon gözlendi. Slit-pore sayısı kontrol gruptakinden belirgin olarak azalmıştı (Kontrol: 32, 68±0,6 proteinüri öncesi: 16,3±1,11). Akut nefroz grubunda slit-pore sayısı daha da azalmıştı (6,05±1,54). Bu grubun düşük proteinüri gösteren sıçanlarında podositlerde hipertrofi, mikroflament ve endositotik aktivite artışı ve buna bağlı çok sayıda protein absorpsiyon granülleri (PAG), podosit ayakçıklarında kaynaşma görüldü. PAG’ların oluşum ve podositlerden sekret edildiği aşamalara ait görüntülere rastlandı. Mezengial hücre artışı görüldü. Bu grubun yüksek proteinüri gösteren sıçanlarında ise podositlerde mikroflamentlerde ve PAG’da azalma ve pseudokistik yapılar gözlendi. Bowman aralığında apopitotik podositlere rastladık. Podosit ayakçıkları incelmiş uzamış ve kaynaşmalar artmıştı. GBM’lerde incelme podosit ayakçıkları, kaybolduğu çıplaklaşmış GBM bölgelerine sıklıkla rastlandı. Perimezengial sahaya yakın artmış mezengial matriks içinde depositler görüldü. Proteinüri öncesi grubun laboratuar bulgularında anlamlı bir farklılık saptanmadı. Akut nefroz grubunda ise proteinüri 5,04±2’den 91,34±91 mg/24 saate yükseldi. Serum albumin anlamlı olarak 3,23±0,1’den 2,5±0,63 g/ dl’ye, kreatinin klirensi ise anlamlı olarak 0,55±0,8’den 0,38±0,28 ml/min’e azaldı. Bulgularımız bize PAN nefrozizde; 1- İlk etkilenen hücrelerin podositler olduğu, 2- Proteinüri artışı serumalbumin ve kreatinin klirensi azalması ile slit-pore sayısı azalması arasında ilişki olduğu, 3- Başlangıçtaki protein geçişinde podositlerle endositozla alınan proteinlerin lizozomal aktivite ile parçalanarak sekret edildiği intrasitoplazmik yolun kullanıldığını, 4- Yüksek proteinüridan ise podosit ayakçıkları kaybı neticesi oluşmuş çıplaklaşmış GBM bölgelerinin sorumlu olduğu ve podositlerde apopitozisin indüklendiğini düşündürmektedir.

Acute puromycine aminonucleoside nephrosis proteinuria, creatinine-clearance, serum albumin levels and the relationship of Slit-pore count and ultrastructural changes of the corpusculum renale malpighi

Background and Design.- We tried to investigate in puromycine aminonucleoside (PAN) Wistar rats, (whom we injected subcutaneously 1.67 mg/100g PAN), the relationship of clinical proteinuria and morphological changes. In our groups ‘before clinically established proteinuria’ and after developed ‘acute nephrosis’, ultrastructural changes of the corpusculum renale Malpighi, morphologically alterations of the number of the slit-pores during developing proteinuria and the hydraulic permeability changes were correlated with the clinical parameters.Result.- In the group with not yet established proteinuria podocytes were hypertrophied. The glomerular basement membrane was invaginated into the foot processes and thickened. Slit pore count was decreased in comparison to control rats (control: 32.68± 0.6, ‘before proteinuria’: 16.3±1.11). In the fused foot processes, which formed foot processes with an enlarged cytoplasma, we could see highly condensated microfilaments near the glomerular basement membrane. In the ‘acute nephrosis’ group the slit-pores count were even more decreased (6.05±1.54). In the rats which showed lesser proteinuria than others, in the acute group, protein absorption granules (PAG) and the different stages of PAG formation and secretion from podocyte were observed. In the rats with lower proteinuria we observed hypertrophy, increased endocytic activity, fused foot processes condensate electron dense microfilaments and PAG in the podocytes. Mesangial cells were increased. In the rats with high proteinuria, podocytic PAG and microfilaments were decreased and pseudocysts appeared. In the Cavum Bowmani, free apoptotic podocytes were to be seen. Foot processes slimmed, lengthened, fusion increased and high condensation of microfilaments disappeared. PAG were highly decreased. GBM was generally thinned and often nude GBM was noticed, with totally lost foot processes. In areas of degenerated podocytes, mesangial matriks expansion was attracting our attention. Close proximity to perimesangial area, within the increased mesangial matriks, electron dense deposits were observed. Control group and the group ‘before established proteinuria’ were not significantly different from each other concerning the level of proteinuria, serum albumin and creatinine clearance. In the ‘acute nephrosis’ group proteinuria increased significantly from 5.04±2 to 91.34±91 mg/24 hours, serum albumin and creatinine clearance decreased from 3.23±0.1 to 2.5±0.63 g/dl, from 0.55±0.8 to 0.38±0.28 ml/min respectively.Conclusion.- Our results showed us that in PAN nephrosis: 1-The firstly affected cells are the podocytes 2-There is a relationship between proteinuria, serum albumin and creatinine clearance loss and slit pore decrease 3-The podocytes first endocytose proteins and later with help of intracellular lysosomal activity, break them into pieces, to secrete them by exocytosis and use for all this the intracytoplasmic way 4-Loss of the foot processes or totally nude GBM areas are the real culprit of high levels of proteinuria and apoptosis in podocytes is induced.

___

  • 1. Bohman S-O, Jaremko G Bohlın A-B, Berg U. Foot process fusion and glomerular filtration rate in minimal change nephrotic syndrome, Kidney Int 1984; 25: 696-700.
  • 2. Danıels BS. The role of the glomerular epithelial cell in the maintenance of the glomerular filtration barrier, Am J Nephrol 1993; 13: 318-323.
  • 3. Caulfıeld JP, Farquhar M,G. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis, Lab Invest 1978; 39: 505-512.
  • 4. Weenıng JJ, Rennke HG. Glomerular permeability and polyanion in Adriamycin nephrosis in the rat, Kidney Int, 1983; 24, 152-159.
  • 5. Whıtesıde C, Prudıs K, Cameron R, Thompson J. Glomerular epithelial detachment, not reduced charge density, correlates with proteinüri in adriamycin and puromycin nephrosisLab, Invest, 1989; 61: 6, 650-660.
  • 6. Caulfıeld JP, Farquhar MG. Distribution of anionic sites in glomerular basement membranes: Their possible role in filtration and attachment, Proc Natl Acad Sci, USA 1976; 73: 1646-1650.
  • 7. Messına A, Davıes DJ, Dıllane PC, Ryan GB.Glomerular epithelial abnormalities associtared with the onset of proteinüri in aminonucleoside nephrosis, Am, J, Pathol, 1987; 126: 220-229.
  • 8. Ryan GB, Karnovsky MJ. An ultrastuructural of mechanism of proteinüri in aminonucleoside nephrosis, Kidney Int 1975; 8: 219-232.
  • 9. Kanwar YS, Rosenzweıg LJ. Altered glomerular permeability as a result of focal detachment of visceral epithelium, Kidney Int 1982; 21: 565-574.
  • 10. Powell HR. Relationship between proteinüri and epithelial cell changes in minimal lesion glomerulopathy, Nephron 1976; 16: 310-317.
  • 11. Krız W, Elger M, Nagata M, Kretzler M, Uıker S, Koeen-Hagemann I, Tenschert S, Lemley KV. The role of podocytes in the development of glomerular sclerosis, Kidney Int, 1994; 45, (Suppl 42), 64-72
  • 12. Gang NF, Mautner W.Studies on the mechanism of the onset of proteinüri in aminonucleoside nephrosis, Lab. Invest, 1972; 27: 310-322
  • 13. Caulfıeld JP, Reıd JJ, Farquhar MG.Alteration of the glomerular epithelium in acute aminonucleoside nephrosis, Lab. Invest, 1976; 34: 43-55.
  • 14. Wang Y, Bass PS, Evans B, Thomas JH, Davıes DR. Glomerular epithelial cell endocytosis in puromycin-induced glomerulopathy, Nephron 1992; 62: 84-89.
  • 15. Seefeldt T, Bohman SO, Gundersen HJG, Maunsbach AB, Petersen VP, Olsen S. Quantitative relationship between glomerular foot process width and proteinüri in glomerlonephritis, Lab, Invest, 1981; 44; 541-554.
  • 16. Rennke HG. How does glomerular epithelial cell injury contribute to progressive glomerular damage? Kidney Int, 1994; 45 (Suppl, 45): 58-63.
  • 17. Budde K, Neumayer HH, Salant DJ, Cybulsky AV, Coleman DL, Sterzel RB. Glomerular epithelial cell products stimulate mezangial cell proliferation in culture, Kidney Int 1997; 52: 733-741.
  • 18. Endlıch K, Krız W, Wıtzgall R. Update in podocyte biology, Curr Opin Neph Hypert , 2001; 10: 331-340.
  • 19. Morıoka Y,Koıke H, Ikezumı Y, Ito Y, Oyanagı, , A Gejyo F, Shımızu, F, Kawachı H. Podocytes injuries exacerbate mezangial proliferative glomerulonephritis, Kidney Int 2001; 60: 2192-2204.
  • 20. Kerjaschkı D.Disfunctions of cell biology mechanism of visceral epithelial cell (podocytes) in glomerular diseases, Kidney Int, 1994; 45: 300-313.
  • 21. Kaplan LA, Pesce Aİ. Clinical chemistry methods of analysis; 1984; 1322-1323.
  • 22. Shimojo H. Adaptation and distortion of podocytes in rat remnant kidney. Pathol Int. 1998; 48: 368-83
  • 23. Nagata M, Yamaguchı Y, Komatsu Y, Ito K.Mitosis and the presence of binucleate cells among glomerular podocytes in diseased human kidneys, Nephron 1995; 70: 68-71.
  • 24. Petermann AT, Pippin J, Hiromura K et al. Mitotic cell cycle proteins increase in podocytes despite lack of proliferation. Kidney Int 2003; 63: 113-122,
  • 25. Castellot JJ, Hoover RL, Harper PA, Karnovsky MJ. Heparin and glomerular epirhelial cell-secreted heparinlike species inhibitmesangial-cell proliferation, Am J Pathol 1985; 120: 427-435.
  • 26. Floege J, Johnson Rj, Alpers Ce, Fatemı-Naınıe S, Rıchardson Ca, Gordon K, Couser Wg. Visceral glomerular epithelial cells can proliferate in vivo and synthesize platelet – derived growth factor B-chain, Am J Pathol, 1993; 142: 637-650.
  • 27. Krız W. The role of podocyte in the degeneration of a renal glomerulus, Advances Nephrol 1997; 27: 1-13.
  • 28. Salant DJ. The stuructural biology of glomerular epithelial cells in proteinuric disseases, Curr Opin Nephrol Hypertens 1994; 3: 569-574.
  • 29. Shirato I, Sakai T, Kimura K, Tomino Y, Kriz W. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol. 1996; 148: 1283-96
  • 30. Caulfıeld JP, Frquhar MG. The permeability of glomerular capilleries to graded dextrans, Identification of the basement membrane as the primary filration barrier, J Cell Biol 1974; 63: 883-903.
  • 31. Rydel JJ, Schwartz MM, Sıngh AK .Sequential localization of antibody to multiple regions of the glomerular capillary wall in passive Heymann nephritis, Lab Invest 1989; 60: 492-498.
  • 32. Tornroth T. The fate of subepithelial depozits in acute poststreptococcal glomerulonephritis, Lab Invest 1976; 35: 461-474.
  • 33. Bohrer MP, Baylıs C, Robertson CR, Brenner BM. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules J, Clin, Invest, 1977; 60: 152-161.
  • 34. Fujıgakı Y, Nagase M, Hıdaka S, Matsuı K, Shıraı M, Nosaka H, Kawachı H, Shımızu F, Hıshıda A. Altered anionic GBM components in monoclonal antibody againist slit diaphragm-injected proteinuric rats, , Kidney Int 1998; 54: 1491-1500.
  • 35. Levidiotis V, Kanellis J, Lerino F.L., Power D.A. Increased experssion of heparanase in puromycin aminonucleoside nephrosis. J Am Soc Nephrol II. 2000; 11: 532 A.
  • 36. Barbey MM, Fels LM, Soose M. Adriamycin affects glomerular renal function: Evidence for the involvement of oxygen radicals, , Free Radic Res Commun 1989; 7: 195-203.
  • 37. Neale TJ, Ullrıch R, Ojha P. Reactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis, Proc Natl Acad Sci USA 1993; 90: 3645-3649.
  • 38. Inoue T, Yaoita E, Kurihara H, et al. FAT is a component of glomerular slit diafragms. Kidney Int 2001; 59: 1003-1012.
  • 39. Shimizu J, Tanaka H, Aya K, et al. A missense mutation in the nephrin gene impairs membrane targeting. Am J Kidney Dis 2002; 40: 697-703
  • 40. Luimula P, Sandstrom N, Novikov D, et al. Podocyte associated molecules in puromycin aminonucleoside nephrosis of the rat. Lab Invest, 2002; 82: 713-718.
  • 41. Caulfıeld JP, Farquhar MG. The permeability of glomerular capillaries of aminonucleoside nephrotic rats to graded dextrans, J Exp Med 1975; 142: 61-72.
  • 42. Mıller F, Palade GE. Lytic activities in renal protein absorption droplets, An electron microscopical cytochemical study, J Cell Biol 1964; 23: 519.
  • 43. Whiteside CI, Cameron R, Munk S, Levy J. Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am J Pathol. 1993; 142: 1641-53.
  • 44. Mundel p., Shankland SJ: Podocyte biology and response to injury. J Am Soc Nephrol 2002; 13: 3005-3015.
  • 45. Kretzler M, Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc Res Tech. 2002; 15; 57:247-53.
  • 46. Kim YH, Goyal M, Kurnıt D, Wharram B, Wıggıns J, Holzman L, Kershaw D and Wıggıns R: Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat, Kidney Int.l 2001; 60: 957-968.
  • 47. Schiffer M, Bitzer M, Roberts IS, Kopp JB, Dijke P, Mundel P, Bottinger EP.Apoptosis in podocytes induced by TGF-beta and Smad7 .J Clin Invest 2001;108: 807-816.
  • 48. Ding G, Reddy K, Kapasi AA, Franki,Gibbons N, Kasinath BS,Singhal PC.Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J.Renal Physiol 2002; 283: F173-180.
  • 49. Samwal V, Pandya M, Bashkaran M, Franki N, Reddy H, Ding G, Kapasi A, Valderrama E, Singhal PC: Puromycine aminonucleoside induces glomerular epithelial cell apoptosis. Expt Mol Path 2001; 70: 54-64
  • 50. Lemley KV, Lafayette RA, Safai Met al. Podocytopenia and disease severity in IgA nephropathy. Kidney Int 2002; 61: 1475-1485.
  • 51. Whits KE, Bilous RW, Marshall SM, et al. Podocyte number in normotensive type 1 diabetes patients with albuminuria. Diabetes 2002; 51: 3083-3089.