Diyet Polifenollerinin Kahverengileşme ve Kahverengi Yağ Dokusu Aktivitesi Üzerine Etkileri

Dünya Sağlık Örgütü (DSÖ) dünya yetişkin nüfusunun yaklaşık %13'ünün obez olduğunu belirtmektedir. Bu durum obeziteyi ve komplikasyonlarını, en önemli küresel halk sağlığı endişelerinden ve önlenebilir hastalıklardan biri haline getirmektedir. Beslenme, obezitenin önlenmesinde ve yönetiminde kilit role sahiptir. Birçok çalışma, besin kaynaklı ögelerin (özellikle polifenollerin) obezitenin önlenmesinde ve yönetiminde rol oynayabileceğini göstermektedir. Yetişkin insanlarda aktif kahverengi yağ dokusu varlığının tespiti ve kahverengi yağ dokusunun (KYD) aktivasyonu yoluyla enerji harcaması, obezite yönetiminde umut verici bir yöntem olarak gösterilmektedir. Polifenollerle ilişkilendirilen bazı anti-diyabetik ve obeziteyi önlemeye yönelik aktivitelerin, enerji harcaması üzerinde olumlu etkileri olabileceği düşünülmektedir. Bu derleme enerji harcamasının kahverengileşme yoluyla düzenlenmesinde bazı polifenollerin olası etkilerini değerlendirmektedir.

Effects of Dietary Polyphenols on Browning and Brown Adipose Tissue Activity

The World Health Organization (WHO) states that about 13% of the world’s adult population is obese. This makes obesity and its complications one of the most important global public health concerns and preventable diseases. Nutrition has a key role in the prevention and management of obesity. Many studies show that food-derived elements (especially polyphenols) may play a role in the prevention and management of obesity. The determination of the presence of active brown adipose tissue in people and the expenditure of energy through the activation of brown adipose tissue (BAT) is shown as a promising method in the management of obesity. It is believed that some anti-diabetic and obesity-preventing activities associated with polyphenols may have a positive effect on energy expenditure. This review assesses the possible effects of some polyphenols on the regulation of energy expenditure through browning.

___

  • 1. Montanari, T, Pošćić, N, Colitti, M, Factors involved in white‐to‐brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews, 2017. 18(5): p. 495-513.
  • 2. Silvester, A.J, Aseer, K.R, Yun, J.M, Dietary polyphenols and their roles in fat browning. The Journal of Nutritional Biochemistry, 2019. 64: p. 1-12.
  • 3. Poher, A.-L., Altirriba, J., Veyrat-Durubex, C., Rohner-Jeanrenaud, F, Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Frontiers in Physiology, 2015. 6: p. 4.
  • 4. Li, Z, Zhang, Z, Ke, L, Sun, Y, Li, Wenxue, Feng, X, Zhu, W, Chen, S, Resveratrol promotes white adipocytes browning and improves metabolic disorders in Sirt1‐dependent manner in mice. The FASEB Journal, 2020. 34(3): p. 4527-4539.
  • 5. Mele, L, Bidault, G, Mena, P, Crozier, A, Brighenti, F, Vidal-Puig, A, Del Rio, D, Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr, 2017. 8(5): p. 694-704.
  • 6. Marlatt, K.L, and Ravussin, E, Brown Adipose Tissue: an Update on Recent Findings. Current Obesity Report, 2017. 6(4): p. 389-396.
  • 7. Hu, X., Zhang, Y, Xue, Y, Zhang, Z, Wang, J, Berberine is a potential therapeutic agent for metabolic syndrome via brown adipose tissue activation and metabolism regulation. American Journal of Translational Research, 2018. 10(11): p. 3322.
  • 8. Okla, M, Kim, J, Koehler, K, Chung, S, Dietary factors promoting brown and beige fat development and thermogenesis. Advances in Nutrition, 2017. 8(3): p. 473-483.
  • 9. Concha, F, Prado, G, ve ark. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Reviews in Endocrine and Metabolic Disorders, 2019. 20(2): p. 161-171.
  • 10. Betz, M.J, and Enerbäck, S, Human brown adipose tissue: what we have learned so far. Diabetes, 2015. 64(7): p. 2352-2360.
  • 11. Villarroya, F, Cereijo, R, Villarroya, J, Giralt, M, Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 2017. 13(1): p. 26-35.
  • 12. Arhire, L.I, Mihalache, L, Covasa, M, Irisin: a hope in understanding and managing obesity and metabolic syndrome. Frontiers in Endocrinology, 2019. 10: p. 524.
  • 13. Oelkrug, R, Polymeropoulos, E, Jastroch, M, Brown adipose tissue: physiological function and evolutionary significance. Journal of Comparative Physiology B, 2015. 185(6): p. 587-606.
  • 14. Luo, L, and Liu, M, Adipose tissue in control of metabolism. Journal of Endocrinology, 2016. 231(3): p. R77-R99.
  • 15. Kaisanlahti, A, and Glumoff, T, Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. Journal of Physiology and Biochemistry, 2019. 75(1): p. 1-10.
  • 16. El Hadi, H, Di Vincenzo, A, Vettor, R, Rossato, M, Food ingredients involved in white-to-brown adipose tissue conversion and in calorie burning. Frontiers in Physiology, 2019. 9: p. 1954.
  • 17. Sanchez-Gurmaches, J, Hung, C.M, Guertin, D.A, Emerging complexities in adipocyte origins and identity. Trends in Cell Biology, 2016. 26(5): p. 313-326.
  • 18. Bargut, T.C.L, Souza-Mello, V, Aguila, M.B, Mandarim-de-Lacerda, C.A, Browning of white adipose tissue: lessons from experimental models. Hormone Molecular Biology and Clinical Investigation, 2017. 31(1).
  • 19. Cannon, B, Nedergaard, J, Brown adipose tissue: function and physiological significance. Physiological Reviews, 2004. 84(1): p. 277-359.
  • 20. Nedergaard, J, Bengtsson, T, Cannon, B, New powers of brown fat: fighting the metabolic syndrome. Cell Metabolism, 2011. 13(3): p. 238-40.
  • 21. Zhang, H, Tsao, R, Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 2016. 8: p. 33-42.
  • 22. Giralt, M, Cairó, M, Villarroya, F, Hormonal and nutritional signaling in the control of brown and beige adipose tissue activation and recruitment. Best Practice & Research Clinical Endocrinology & Metabolism, 2016. 30(4): p. 515-525.
  • 23. dos Santos, T.W, Pereira, Q.C, Teixeira, L, Gambero, A, Villena, J.A, Riberio, M.L, Effects of polyphenols on thermogenesis and mitochondrial biogenesis. International Journal of Molecular Sciences, 2018. 19(9): p. 2757.
  • 24. Kida, R, Yoshida, H, ve ark. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochemistry and Function, 2016. 34(1): p. 34-41.
  • 25. Baskaran, P, Krishnan, V, Ren, J, Thyagarajan, B, Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms. British Journal of Pharmacology, 2016. 173(15): p. 2369-2389.
  • 26. Saito, M, Yoneshiro, T, Matsushita, M, Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Practice & Research Clinical Endocrinology & Metabolism, 2016. 30(4): p. 537-547.
  • 27. Yoneshiro, T, Aita, S, Kawai, Y, Iwanaga, T, Saito, M, Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. The American Journal of Clinical Nutrition, 2012. 95(4): p. 845-850.
  • 28. Wang, S, Liang, X, ve ark. Resveratrol enhances brown adipocyte formation and function by activating AMP‐activated protein kinase (AMPK) α1 in mice fed high‐fat diet. Molecular Nutrition & Food Research, 2017. 61(4): p. 1600746.
  • 29. Andrade, J.M.O., Frade, A.C.M., ve ark. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. European Journal of Nutrition, 2014. 53(7): p. 1503-1510.
  • 30. Mele, L, Bidault, G, ve ark. Dietary (Poly) phenols, brown adipose tissue activation, and energy expenditure: A narrative review. Advances in Nutrition, 2017. 8(5): p. 694-704.
  • 31. Wang, S, Wang, X, ve ark. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochemical and Biophysical Research Communications, 2015. 466(2): p. 247-253.
  • 32. Pivari, F, Mingione, A, Brasacchio, C, Soldati, L, Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients, 2019. 11(8).
  • 33. Koboziev, I, Scoggin, S, ve ark. Effects of Curcumin in a Mouse Model of Very High Fat Diet-Induced Obesity. Biomolecules, 2020. 10(10).
  • 34. Lone, J, Choi, J.H, Kim, S.W, Yun, J.W, Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. The Journal of Nutritional Biochemistry, 2016. 27: p. 193-202.
  • 35. Song, Z, Revelo, X, ve ark. Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue UCP1 expression. Obesity, 2018. 26(3): p. 547-558.
  • 36. Perez-Vizcaino, F, Duarte, J, Flavonols and cardiovascular disease. Molecular Aspects of Medicine, 2010. 31(6): p. 478-94.
  • 37. Choi, H., Kim, C.-S, Yu, R, Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. Journal of Obesity & Metabolic Syndrome, 2018. 27(2): p. 102.
  • 38. Lee, S.G, Parks, J.S, Kang, H.W, Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. The Journal of Nutritional Biochemistry, 2017. 42: p. 62-71.
  • 39. Dong, J, Zhang, X, Zhang, L, Bian, H.X, Xu, N, Bao, B, Liu, J, Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. Journal of Lipid Research, 2014. 55(3): p. 363-374.
  • 40. Sato, S, Mukai, Y, Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. Journal of Inflammation Research, 2020. 13: p. 421-431.
  • 41. Perdicaro, D.J, Lanzi, C.R, Tudela, J.G, Miatello, R.M, Oteiza, P.I, Prieto, M.A.V, Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. The Journal of Nutritional Biochemistry, 2020. 79: p. 108352.
  • 42. Del Rio, D, Rodriguez-Mateos, A, Spencer, J.P.E, Tognolini, M, Borges, G, Crozier, A, Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 2013. 18(14): p. 1818-92.
  • 43. Hibi, M, Takase, H, Iwasaki, Masaki, Osaki, N, Katsuragi, Y, Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: a pooled analysis of 6 human trials. Nutrition Research, 2018. 55: p. 1-10.
  • 44. Legeay, S, Rodier, M, Fillon, L, Faure, S, Clere, N, Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome. Nutrients, 2015. 7(7): p. 5443-68.
  • 45. Chen, Li-H, Chien, Yi-W, Liang, Chung-T, Chan, Ching-H, Fan, Meng-H, Huang, Hui-Y, Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat. Food & Nutrition Research, 2017. 61(1): p. 1347480.
  • 46. Nirengi, S, Amagasa, S, ve ark. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. Springerplus, 2016. 5(1): p. 1363.
  • 47. Chen, I-J, Liu, Chia-Y, Chiu, Jung-P, Hsu, Chung-H, Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition, 2016. 35(3): p. 592-9.
  • 48. Hsu, Chung-H, Tsai, Tung-H, ve ark. Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition, 2008. 27(3): p. 363-70.
  • 49. Xu, X, Yi, H, ve ark. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomedicine & Pharmacotherapy, 2021. 133: p. 110984.
  • 50. Wu, L, Xia, M, ve ark. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death & Disease, 2019. 10(6): p. 1-18.
  • 51. Zhang, Z, Zhang, H, ve ark. Berberine activates thermogenesis in white and brown adipose tissue. Nature Communications, 2014. 5(1): p. 1-15.
Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2147-9607
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2014
  • Yayıncı: Manisa Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Saturasyon – Tırnak Cilası ve İki Farklı Cihaz

Cumhur Murat TÜLAY, Ekim SAĞLAM GÜRMEN

Atrial Fibrilasyon İle ACE Gen Polimorfizmi Arasındaki İlişkinin İncelenmesi

Ferhat ÖZYURTLU, Özgür BAYTURAN

Yaşlı Başlangıçlı Romatoid Artrit, Genç Başlangıçlı Romatoid Artritten Farklı mı?

Betül Üstün ÇETİNKAYA, Yunus DURMAZ, İlker İLHANLI, Ahmet Kıvanç CENGİZ

Diz Osteoartritli Yaşlı Kadınlarda Kinezyo Bantlama Öncesi ve Sonrası Fonksiyon, Ağrı ve Dinamik Denge: Bir Pilot Çalışma

Tansu BİRİNCİ, Seda Yakıt YEŞİLYURT, Şule BADILLI HANTAL

Huzurevlerinde Yaşayan Bireyler Aile Hekimliği Uygulaması Hakkında Ne Kadar Bilgi Sahibi?

Fatih ÖZCAN, Hüseyin ELBİ, Saniye Seda SEVİM

Hafif Kafa Travması Sonrası Bazal Ganglion İnternal Kapsülada (BGİK) İnme Gelişen İki Olgu

Çişil Çerçi KUBUR, Muzaffer POLAT, Aslı Kübra ATASEVER, Celil YILMAZ, Sibğatullah Ali ORAK

Komplike Anatomili Erişkin İstmik Aort Koarktasyonu için Endovasküler Tedavi

Funda YILDIRIM, Dilşad AMANVERMEZ ŞENARSLAN

Kardiyak Yeniden Şekillenme ile Kardiyo-Elektrofizyolojik Denge İndeksi Arasındaki İlişki

Zafer BÜYÜKTERZİ, Mehmet Burak ÖZEN, Mustafa DURAN

Kalp Cerrahisi Olan Hastalarda Minimal Ekstrakorporeal Dolaşım ve Konvansiyonel Dolaşım Sistemlerinin Karşılaştırılması

Gönül ERKAN, Mehmet Ali YÜRÜK

Kronik Bel Ağrılı Hastalarda Obezitenin Fiziksel Performans Üzerine Etkisi

Zeliha BAŞKURT, Melek CEYLAN, Ferdi BAŞKURT