Zirkonyum-Antimon Oksit/Poliakrilonitril Kompoziti ile Stronsiyum Adsorpsiyonunun Dinamik Sistemlerde İncelenmesi

Bu çalışmada, kolon kullanımına uygun yapıda zirkonyum-antimon oksit/PAN kompozit kürecikleri sentezlenmiştir. Sentezlenen küreciklerin stronsiyuma karşı adsorpsiyon davranışları dinamik koşullarda, kolon yöntemi ile deneysel tasarım yaklaşımı kullanılarak belirlenmiştir. Akış hızı, başlangıç derişimi ve yatak yüksekliği gibi temel parametrelerin stronsiyum adsorpsiyonu üzerindeki etkileri Box-Behnken Tasarımı kullanılarak incelenmiştir. Stronsiyum alım denemeleri merkez noktalarda 3 tekrar ile 15 adet denemenin yürütülmesi ile gerçekleştirilmiştir. İkili etkileşimler incelenerek söz konusu parametrelere bağımlılığı gösteren cevap yüzey grafikleri oluşturulmuştur. Bağımsız değişkenlerin regresyon analizi sonucunda R kare değerinin 0.995 olması, öngörülen değerler ile deneysel değerlerin %99.5 oranında uyumlu olduğunu göstermektedir. Ayrıca stronsiyum alımında, akış hızı (P-değeri=3x10-4), başlangıç derişimi (P-değeri=2x10-6), yatak yüksekliği (P-değeri=4x10-5) parametreleri ile bütün ikili etkileşimlerin istatistiksel olarak önemli olduğu bulunmuştur. Maksimum adsorpsiyon kapasitesinin (11.00 mg.g-1), 0.20 mL.dak-1 akış hızında, 100 mg.L-1 başlangıç derişiminde ve 1 cm yatak yüksekliğinde gerçekleştiği tespit edilmiştir. Zirkonyum-antimon oksit/PAN küreciklerinin stronsiyuma karşı breakthrough (kırılma) eğrisi çizilip analiz edilerek, kolonun sızdırma (tb) ve doyma noktası (ts) ile bu noktalardaki kapasiteleri qb ve qs hesaplanmıştır. Kırılma eğrisinin analizi sonucunda, sızdırma (tb) ve doyma noktası (ts) sırası ile 3125 ve 6400 dakika olarak bulunmuş, bu noktalardaki sızdırma (qb) ve doyma kapasitesi (qs) ise sırasıyla 23.43 ve 47.98 mg.g-1 olarak hesaplanmıştır.

The Investigation of Strontium Adsorption using Zirconium-Antimony Oxide/Polyacrylonitrile Composite in Dynamic Systems

In this study, zirconium-antimony oxide/PAN composite spheres, suitable for column use, were synthesized. The adsorption behaviors of synthesized materials towards strontium were analyzed via column technique using experimental design approach. The effect of basic parameters on strontium adsorption such as flow rate, initial strontium concentration and bed height were investigated using Box-Behnken Design. Strontium uptake studies were carried out by performing 15 runs with 3 replicates at center points. Dual interactions were examined and response surface graphs showing the strontium adsorption dependency to the related parameters were constructed. According to the regression analyses of independent variables, R square value of 0.995 implies that the predicted values are in a good agreement (99.5%) with the experimental values. In addition, flow rate (P-value=3x10-4), initial concentration (P-value=2x10-6), bed height (P-değeri=4x10-5) parameters and all interaction terms were found statistically significant. The maximum adsorption capacity (11.00 mg.g-1) was obtained at a flow rate of 0.20 mL.min-1, initial strontium concentration of 100 mg.L-1 and a bed height of 1 cm. The breakthrough curve of zirconium-antimony oxide composite spheres towards strontium were drawn and analyzed. The breakthrough (tb) and saturation point (ts) of the column and the related capacities, qb and qs were calculated. From the analysis of curve, breakthrough (tb) and saturation point (ts) were found as 3125 and 6400 minutes, respectively. The breakthrough (qb) and saturation capacity (qs) at these points were calculated as 23.43 ve 47.98 mg.g-1, respectively.

___

  • 1. U.S. Nuclear Regulatory Comission, Factsheet on: Back-grounder on Radioactive Waste. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html (accessed 10.10.2016).
  • 2. Pendelyuk, O, Lisnycha, T.V, Strelko, V.V, Kirillov, S.A, Amorphous MnO2–TiO2 Composites as Sorbents for Sr2+ and UO22+, Adsorption, 2005, 11, 799-804.
  • 3. International Atomic Energy Agency (IAEA), Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, IAEA Technical Re-ports SeriesNo. 408, Austria, 2002.
  • 4. Venkatesan, K.A, Rao, P.R.V, Stamberg, K, Modelling of the Sorption of Sr(II) on Hydrous Zirconium Oxide, Journal of Radi-oanalytical and Nuclear Chemistry, 2001, 250, 477-484.
  • 5. İnan, S, Tel, H, Altaş, Y, Sorption Studies of Strontium on Hydrous Zirconium Dioxide, Journal of Radioanalytical and Nuclear Chemistry, 2006, 267, 615-621.
  • 6. Venkatesan, K.A, Selvam, G.P, Rao, P.R.V, Sorption of Stron-tium on Hydrous Zirconium Oxide, Separation Science and Tech-nology, 2000, 35, 2343-2357.
  • 7. Ahmadi, S.J, Akbari, N, Shiri-Yekta, Z, Mashhadizadeh, M. H, Pourmatin, A, Adsorption of Strontium Ions From Aqueous Solu-tion Using Hydrous, Amorphous MnO2–ZrO2 Composite: A New Inorganic Ion Exchanger, Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1701-1707. 8. Trivedi, P, Axe, L, A Comparison of Strontium Sorption to Hydrous Aluminum, Iron and Manganese Oxides, Journal of Col-loid and Interface Science, 1999, 218, 554-563.
  • 9. Möller, T, Harjula, R, Kelokaski, P, Vaaramaa, K, Karhu, P, Lehto, J, Titanium Antimonates in Various Ti:Sb Ratios: Ion Ex-change Properties for Radionuclide Ions, Journal of Materials Chemistry, 2003, 13, 535-541.
  • 10. Sivaiah, M.V, Venkatesan, K.A, Krishna, R.M, Sasidhar, P, Murthy, G.S, Ion Exchange Properties of Strontium on In situ Precipitated Polyantimonic Acid in Amberlite XAD-7, Separation and Purification Technology, 2005, 44, 1-9.
  • 11. Koivula, R, Harjula, R, Lehto, J, 63Ni and 57Co Uptake and Selectivity of Tin Antimonates of Different Structure, Separation Science and Technology, 2003, 38, 3795-3808. 12. Cakir, P, İnan, S, Altaş, Y, Investigation of Strontium and Uranium Sorption onto Zirconium-antimony Oxi-de/Polyacrylonitrile (Zr-Sb oxide/PAN) Composite Using Experi-mental Design, Journal of Hazardous Materials, 2014, 271, 108-119.
  • 13. Koivula, R, Harjula, R, Lehto, J, Structure and Ion Exchange Properties of Tin Antimonates with Various Sn and Sb Contents, Microporous and Mesoporous Materials, 2002, 55, 231-238.
  • 14. Moon, J-K, Kim, K-W, Jung, C-H, Shul, Y-G, Lee, E-H, Prepa-ration of Organic-Inorganic Composite Adsorbent Beads for Re-moval of Radionuclides and Heavy Metal Ions, Journal of Radio-analytical and Nuclear Chemistry, 2000, 246, 299-307.
  • 15. Myers, R.H, Montgomery, D.A, Response Surface Methodolo-gy; 5th edn. John Wiley & Sons, Inc.; Hoboken, NJ, 2001.