Tuz Stresi ve BAP Varlığında Amsonia orientalis’in Antioksidan Enzimlerinin İncelenmesi

Amsonia orientalis Decne. (Apocynaceae), dünyada sadece Türkiye'nin kuzeybatısı ve Yunanistan'ın kuzeydoğusunda yayılış gösteren, tıbbi ve ekonomik öneme sahip yapısında çok sayıda glikozitler ve glikoalkaloitler bulunduran, nadir ve tükenme tehdidi altında olan bir bitki türüdür. Bitkinin tükenme tehlikesi altına girişinin önemli sebeplerinden biri olarak giderek artan abiyotik stres koşulları düşünülmektedir. Çalışmamızda, tuzluluk stresinin Amsonia orientalis'in H2O2 ve MDA seviyeleri ile antioksidan enzimlerinin (SOD, CAT, POD) üzerindeki etkisi; stresi yatıştırmak amacıyla 1,0 mg/mL benzilaminopürin (BAP) varlığında elektrofotometrik ve fotometrik olarak irdelelenmiştir. Artan tuz stresi koşullarında H2O2 ve MDA seviyelerinin benzer olarak yüksek tuz konsantrasyonlarında arttığı ancak düşük tuz konsantrasyonlarında azaldığı; üç antioksidan enzimin de spesifik aktivitelerinin arttığı gözlenmiştir. Elektrofotometrik analizler sonucunda artan tuz stresinin bitkinin Fe-SOD ve Cu/Zn-SOD aktivitelerini inhibe ettiği, Mn-SOD aktivitesinde değişiklik oluşturmadığı, CAT ve POD aktivitelerinin ise tüm tuz konsantrasyonlarında korunduğu gözlenmiştir

Investigation of Antioxidant Enzymes of Amsonia orientalis in the Presence of Salt Stress and BAP

Amsonia orientalis Decne (Apocynaceae), is a threatened plant species providing many glycosides and glycoalkaloids which have medicinal and economic significance. The species has a natural distribution only in the northwest of Turkey and the north-east of Greece. Abiotic stress factors are tought to be major causes of plant limited distribution. . Thus, the effect of the increasing salt concentrations onMDA and H2O2 content and antioxidant enzymes (SOD, CAT, POD) of Amsonia orientalis was investigated in the presence of 1.0 mg/mL benzylaminopurine (BAP)-due to sooth effect of BAP- spectrophotometrically and electroprotometrically. It was found that salt stres decreased to H2O2 contend but elevated at high concentrations of NaCl and enhanced the specific activities of antioxidant enzymes tested. Electrophotometric analysis showed that Fe-SOD and Cu/Zn-SODs activities were inhibited while Mn-SOD, CAT and POD activities remained their activities against increasing salt stres

___

  • [1] Özen, F. Amsonia orientalis Decne (Apocynaceae), The Karaca Arboretum Magazine. 2002; 6, 169-172.
  • [2] Darke, R. Amsonia in cultivation, The Plantsman. 2005; 4, (2), 72-75.
  • [3] Itoh, A.; Kumashiro, T.; Tanahashi, T.; Nagakura, N; Nishi, T. Flavonoid Glycosides from Rhazya orientalis, Journal of Natural Products. 2002;.65, (3), 352 -357.
  • [4] Dabiné Lengyel, E.; Turiak, Gy.; Nyaradiné, Szabady.; Zambo, I,; Tétényi, P,; Hermecz, I. Determination of Secologanin Content from Shoots of Rhazya orientalis (Dcne) A. DC. Using the Hplc Method, Herba Hungarica. 1986; 25, (2), 141-150.
  • [5] Özen, F. Türkiye’de Tükenme Tehlikesinde Olan Bir Türün Otekolojisi: Amsonia orientalis Decne. (Apocynaceae), Balıkesir Üniversitesi Fen Bil. Enst. Dergisi. 2006; 8, (1), 4-9.
  • [6] Akın, S.; Özen, F.; Yıldırım, O. Rhazya orientalis (Dcne) Bitkisinden Kardiyoaktif Glikosidlerin, Glikoalkoloidlerin ve Yeni Glikosidlerin İzole Edilmesi ve Yapılarının Aydınlatılması, TÜBİTAK TBAG-1516 (196T038) Nolu Proje, 2001.
  • [7] Akyalçın, H.; Özen, F.; Dülger, B. Anatomy, Morphology, Palynology and Antimicrobial Activity of Amsonia orientalis Decn (Apocynaceeae) Growing in Turkey, International Journal of Botany. 2006; 2 (1), 93-99.
  • [8] Acemi, A.; Özen, F.; Kıran, R. Development of An Efficient Callus Production Protocol for Amsonia orientalis: A Critically Endangered Medicinal Plant. Eurasian Journal of Biosciences. 2012; 6, 105-112.
  • [9] Acemi, A.; Özen, F.; Kıran, R. In vitro Propagation of Amsonia orientalis Decne. from Nodal Segments of Adult Plants. Propagation of Ornamental Plants. 2013; 13, (1), 25-32.
  • [10] Khanna-Chopra, R. Leaf senescence and abiotic stresses share reactive oxygen speciesmediated chloroplast degradation. Protoplasma. 2012; 249, 469-481
  • [11] Scandalios, G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research. 2005; 38, 995-1014.
  • [12] Kurakov, A. V.; Kupletskaya, M. B.; Skrynnikova, E. V.; Somova, N. G. Search for Micromycetes Producing Extracellular Catalase and Study of Conditions of Catalase Synthesis. Applied Biochemistry and Microbiology. 2001; 37, 59-64.
  • [13] Yang, L. Zu, Y. G.; Tang, Z. H. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content, Environmental and Experimental Botany. 2013; 86, 60-69.
  • [14] Mohammadi, M.; Tavakoli, A.; Saba, S. Effects of foliar application of 6- benzylaminopurine on yield and oil content in two spring safflower (Carthamus tinctorius L.) cultivars. Plant Growth Regulation. 2014; 73, 219–226.
  • [15] Murashige, T.; Skoog. F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture. Physiologia Plantarum. 1962; 15, 473-497.
  • [16] Beuchamp, C.; Fridovich, I. Isozymes of superoxide dismutase from wheat germ. Biochimicia Biophysica Acta. 1973; 317, 50–64.
  • [17] Targovnik ,A. M.; Cascone, O.; Miranda, M. V. Extractive purification of recombinant peroxidase isozyme c from insect larvae in aqueous two-phase systems, Seperation Purification Technology. 2012; 98, 199–205.
  • [18] Wu, G. Q.; Zhang, L. N.; Wang, Y. Y. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil Environ. 2012; 58, (12), 534–539.
  • [19] Valetti, N. W.; Picó, G. A friendly method for Raphanus sativus L. (wild radish) peroxidase purifica- tion by polyelectrolyte precipitation. Seperation Purification Technology. 2013; 19, 1–6.
  • [20] Aebi, H. In Bergmeyer H U (ed) Methods of enzymatic analysis, Vol. 2, New York: Academic. 1974; 673–675.
  • [21] Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry. 1976; 72, 248–254.
  • [22] Turan, S.; Tripathy, B.C. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma. 2013; 250(1):209-22.
  • [23] Doupis, G.; Chartzoulakis, K.; Beis, A.; Patakas, A. Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Australian Journal of Grape and Wine Research. 2011; 17, 36–42.
  • [24] Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature. 1970; 227, (5259), 680-85.
  • [25] Blum, H.; Beier, H.; Gross, H. J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987; 8, 93-99.
  • [26] Pan, Y.; Wu, L. J.; Yu, Z. L. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation. 2006; 49, 157-165.
  • [27] Manchenko, G. P. Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press. 2002; 163.
  • [28] Ahmed, C. B.; Rouina, B. B. Sensoy, S., Boukhriss, M., Abdullah, F. B. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry. 2010; 58 (7), 4216–4222.
  • [29] Molassiotis, A. N.; Sotiropoulos, T. E.; Tanou, G.; Kofidis, G. Diamantidis G & Therios I Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biologia Plantarum. 2006; 50(1): 61-68.
  • [30] Wang, X.; Han, J. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agricultural Sciences in China. 2009; 8(4), 432-440.
  • [31] Lee, D. H.; Kim, T. S.; Lee, C. B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology. 2001; 158, 737-745.
  • [32] Parida, A. K.; Das, A. B.; Sanada, Y.; Mohanty, P. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat. Bot. 2004; 80(2), 77-87.
  • [33] Stone, J. R.; Yang, S. Hydrogen peroxide: A signaling messenger, Antioxidant Redox Signal. 2006; 8, 243.
  • [34] Saha, P.; Chatterjee, P.; Biswas ,A.K. Indian Journal of Experimental Biology. 2010; 48, 93-104.
  • [35] Wang, W. B.; Kim, Y. H.; Lee, H. S.; Kim, K.Y;. Deng, X.P.; Kwak, S.S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem. 2009; 47, 570- 577.
  • [36] Noreen; Z.; Ashraf, M. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers.J Plant Physiol. 2009; 1;166(16), 1764-1774.
  • [37] Kim, S. Y.; Lim, J. H.; Park, M. R.; Kim, Y. J.; Park, T. I.; Seo, Y. W.; Choi, K. G.; Yun, S. J. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol. 2005; 38(2), 218-24.
  • [38] Wu, G. Q.; Zhang, L. N.; Wang, Y. Y. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil Environ. 2012; 58,(12), 534–539.