On Iteration Method to The Solution of More General Volterra Integral Equation in Two Variablesand a Data Dependence Result

On Iteration Method to The Solution of More General Volterra Integral Equation in Two Variablesand a Data Dependence Result

Fixed point theory is one of the most important theories and has been studied extensively by researchers in many disciplines. One of these studies is its application to integral equations. In this work, we have shown that the iteration method given in [12] converges to the solution of the more general Volterra integral equation in two variables by using Bielecki’s norm. Also, a data dependence result for the solution of this integral equation has been proven.

___

  • 1. Rawat, S., Dimri, R. C., and Bartwal, A. 2021. A New Iterative Scheme for Approximation of Fixed Points of Suzuki's Generalized Nonexpansive Mappings. doi: 10.20944/preprints202105.0125.v1.
  • 2. Akewe, H. 2016. The stability of a modified Jungck-Mann hybrid fixed point iteration procedure. International Journal of Mathematical Analysis and Optimization: Theory and Applications; 2016, 95-104.
  • 3. Dogan, K. 2018. Daha Hızlı Mann Sabit Nokta Yinelemesi Uzerine Bir Çalısma. Afyon Kocatepe Universitesi Fen ve Mühendislik Bilimleri Dergisi; 18(3), 852-860.
  • 4. Başarır M and Şahin A. 2017. Some Results of The New Iterative Scheme in Hyperbolic Space. Communications of the Korean Mathematical Society; 32 (4), 1009-1024.
  • 5. Gürsoy, F., Karakaya, V., and Rhoades, B. E. 2014, January. Some convergence and stability results for the Kirk multistep and Kirk-SP fixed point iterative algorithms. In Abstract and Applied Analysis; 2014, 1-12.
  • 6. Lungu, N. ve Rus, I. A. 2009. On a Functional Volterra-Fredholm Integral Equation via Picard Operator. Journal of Mathematical Inequalities; 3 (4), 519-527.
  • 7. Bielecki, A. 1956. Un Remarque sur L’application de la Méthode de Banach-Cacciopoli-Tikhonov dans la Théorie de L’equation s= f (x, y, z, p, q). Bull. Acad. Polon. Sci. Sér. Sci. Math. Phys. Astr; 4, 265-268.
  • 8. Banas, J., and Lecko, M. 2002. Fixed points of the product of operators in Banach algebra. Panamerican Mathematical Journal; 12(2), 101-109.
  • 9. Hadizadeh, M., and Asgary, M. 2005. An efficient numerical aproximation for the linear class of mixed integral equations. Applied mathematics and computation; 167(2), 1090- 1100.
  • 10. Çakan, Ü., and Özdemir, İ. 2015. An application of Darbo fixed- point theorem to a class of functional integral equations. Numerical Functional Analysis and Optimization; 36(1), 29-40.
  • 11. Çakan, Ü., and Özdemir, İ. 2017. Applications of measure of noncompactness and Darbo’s fixed point theorem to nonlinear integral equations in Banach spaces. Numerical Functional Analysis and Optimization; 38(5), 641-673.
  • 12. Çakan, Ü. 2017. On monotonic solutions of some nonlinear fractional integral equations. Nonlinear Funct. Anal. Appl.; 22(2), 259-273.
  • 13. Dobritoiu M, 2008. System of Integral Equations with Modified Argument. Carpathian J. Math, 24(2): 26-36.
  • 14. Craciun, C., and Serban, M. A. 2011. A nonlinear integral equation via Picard operators. Fixed point theory; 12(1), 57-70.
  • 15. Gursoy, F. 2014. Applications of normal S-iterative method to a nonlinear integral equation. The Scientific World Journal; 2014, 1-5.
  • 16. Atalan, Y., and Karakaya, V. 2017. Stability of nonlinear Volterra-Fredholm integro differential equation: A fixed point approach. Creat. Math. Inform. 26 (2017), No. 3, 247-254.
  • 17. Atalan, Y., and Karakaya, V. 2017. Iterative Solution of Functional Volterra-Fredholm Integral Equation with Deviating Argument. J. Nonlinear and Convex Analysis; 18(4), 675-684.
  • 18. Karapınar, E., Kumari, P. S., and Lateef, D. 2018. A new approach to the solution of the Fredholm integral equation via a fixed point on extended b-metric spaces. Symmetry; 10(10), 512.
  • 19. Garodia, C., and Uddin, I. 2018. Solution of a nonlinear integral equation via new fixed point iteration process. arXiv preprint arXiv:1809.03771.
  • 20. Abbas, M., Ibrahim, Y., Khan, A. R., and De la Sen, M. 2019. Strong Convergence of a System of Generalized Mixed Equilibrium Problem, Split Variational Inclusion Problem and Fixed-Point Problem in Banach Spaces. Symmetry, 11(5), 722
  • 21. Atalan, Y. 2019. İteratif Yaklaşım Altında Bir Fonksiyonel- İntegral Denklem Sınıfının Çözümünün İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi; 9(3), 1622-1632.
  • 22. Ilea, V., and Otrocol, D. 2020. Existence and Uniqueness of the Solution for an Integral Equation with Supremum, via w- Distances. Symmetry; 12(9), 1554.
  • 23. Ciplea, S. A., Lungu, N., Marian, D., and Rassias, T. M. 2020. On Hyers-Ulam-Rassias stability of a Volterra-Hammerstein functional integral equation. arXiv preprint arXiv:2001.07760.
  • 24. Abdou, M. A., Soliman, A. A., and Abdel–Aty, M. A. 2020. On a discussion of Volterra–Fredholm integral equation with discontinuous kernel. Journal of the Egyptian Mathematical Society; 28(1), 1-10.
  • 25. Beiglo, H., and Gachpazan, M. 2020. Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs. Applied Mathematics and Computation; 369, 124828, 1-9.
  • 26. Panda, S. K., Abdeljawad, T., & Ravichandran, C. 2020. Novel fixed-point approach to Atangana-Baleanu fractional and Lp- Fredholm integral equations. Alexandria Engineering Journal; 59, 4, 1959-1970.
  • 27. Okeke, G. A., & Abbas, M. 2020. Fejér monotonicity and fixed- point theorems with applications to a nonlinear integral equation in complex valued Banach spaces. Applied General Topology; 21(1), 135-158.
  • 28. Gutiérrez, J. M., Hernández-Verón, M. Á., and Martínez, E. 2020. Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes. Mathematics; 8 (10), 1747.
  • 29. Hacıoğlu, E., Gürsoy, F., Maldar, S., Atalan, Y., and Milovanović, G. V. 2021. Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning. Applied Numerical Mathematics; 167, 143-172.
  • 30. Maldar, S. 2020. Yeni Bir İterasyon Yöntemi İçin Yakınsaklık Hızı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi; 10(2), 1263-1272.
  • 31. Soltuz S. M. and Grosan T. 2008. Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl.; 2008 (2008), 1-7.