Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2

Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2

Ceramic/metal laminated composite armor systems have great importance and potential in defencetechnology due to their high ballistic performance and lightweight. In this study, it was aimed todetermine the ballistic performances, limits, and perforation types of light metals (with densities below5.0 g/cm3) used as ductile backing plates in laminated composite armor systems. In the numericalanalysis, SiC tiles of 5 and 10 mm thickness were used as the front layer. Al5083-H116, Mg AZ31B, andTi6Al4V light metal alloys in different thicknesses were used as the backing layer. While using theJohnson and Holmquist (JH-1) material model in SiC ceramic tiles, the Johnson-Cook (JC) materialmodel was applied for “.30 APM2” bullet components and metal layers. The analyzes were performedwith Ansys/Autodyn software. As a result of the simulations, among all the laminated armor systemsproviding full protection against “.30 APM2” ballistic threats with a collision speed of 878 m/s, the lowestareal density was determined as 54.245 kg/m2in 10 mm SiC/5 mm Ti6Al4V laminated composite armor.

___

  • 1. P.K. Jena, B. Mishra, K.S. Kumar, T.B. Bhat, An experimental study on the ballistic impact behavior of some metallic armour materials against 7.62 mm deformable projectile, Materials & Design. 31 (2010) 3308-3316. https://doi.org/10.1016/j.matdes.2010.02.005
  • 2. M.K. Forrestal, V.K. Luk, Perforation of aluminum armor plates with conical-nose projectiles. Mechanics of Materials. 10(1-2) (1990) 97-105. https://doi.org/10.1016/0167- 6636(90)90020-G
  • 3. T. Borvik, A.H., Clausen, O.S., Hopperstad, Langseth, M., Perforation of AA5083-H116 aluminium plates with conicalnose steel projectiles—experimental study, International Journal of Impact Engineering. 30 (2004) 367-384. https://doi.org/10.1016/S0734-743X(03)00072-1
  • 4. T. Borvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, Langseth, M., Perforation of 5083-H116 aluminum plates with conical-nose steel projectiles-calculations, International Journal of Impact Engineering. 36 (2009) 426-437. https://doi.org/10.1016/j.ijimpeng.2008.02.004
  • 5. T. Borvik, M.J. Forrestal, T.L. Warren, Perforation of 5083- H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets, Experimental Mechanics. 50 (2010) 969- 978. https://doi.org/10.1007/s11340-009-9262-5
  • 6. M.F. Abdullah, S. Abdullah, M.Z. Omar, Z. Sajuri, M. Sohaimi, Failure observation of the AZ31B magnesium alloy and the effect of lead addition content under ballistic impact, Advances in Mechanical Engineering. 7(5) (2015) 1-13. https://doi.org/10.1177/1687814015585428
  • 7. T.L. Jones, R.D. DeLorme, M.S. Burkins, W.A. Gooch, Ballistic performance of magnesium alloy AZ31B. 23rd International symposium on ballistics. 989-995, 16-20 April 2007, Tarragona, Spain.
  • 8. J.S. Montgomery, M.G.H. Wells, B. Roopchand, J.W. Ogilvy, Low-cost titanium armors for combat vehicles, JOM. 49(5) (1997) 45-47. https://doi.org/10.1007/BF02914684
  • 9. G. Sukumar, B.B. Singh, A. Bhattacharjee, K. Sivakumar, A.K. Gogia, Effect of heat treatment on mechanical properties and ballistic performance of Ti-4Al-2.3V-1.9Fe alloy, Materials Today. 2 (2015) 1102-1108. https://doi.org/10.1016/j.matpr.2015.07.015
  • 10. B.B. Singh, G. Sukumar, A. Bhattacharjee, K.S. Kumar, T.B. Bhar, A.K. Gogia, Effect of heat treatment on ballistic impact behavior of Ti–6Al–4V against 7.62 mm deformable projectile, Materials & Design. 36 (2012) 640-649. https://doi.org/10.1016/j.matdes.2011.11.030
  • 11. L.S. Gallo, M.O.C.V. Boas, A.C.M. Rodrigues, F.C.L. Melo, E.D. Zanotto, Transparent glass–ceramics for ballistic protection: materials and challenges, Journal of Materials Research and Technology. 8(3) (2019) 3357–3372. https://doi.org/10.1016/j.jmrt.2019.05.006
  • 12. A.L. Florence, Interaction of projectiles and composite armour, part II. Standard Research Institute, Menlo Park, California, 1969.
  • 13. V.P. Alekseevskii, Penetration of a rod into a target at high velocity. Combustion, Explosion and Shock Waves. 2(2) (1966) 63-66. https://doi.org/10.1007/BF00749237
  • 14. Tate, A., A theory for the deceleration of long rods after impact, Journal of the Mechanics and Physics of Solids. 15(6) (1967) 387–399. https://doi.org/10.1016/0022-5096(67)90010- 5
  • 15. R.L. Woodward, A simple one-dimensional approach to modelling ceramic composite armour defeat, International Journal of Impact Engineering. 9(4) (1990) 455-474. https://doi.org/10.1016/0734-743X(90)90035-T
  • 16. P.C. Den Reijer, Impact on ceramic faced armours. PhD thesis, Delft University of Technology, 1991.
  • 17. R. Zaera, V. Sanchez-Galvez, Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armours, International Journal of Impact Engineering. 21(3) (1998) 133–148. https://doi.org/10.1016/S0734- 743X(97)00035-3
  • 18. I.S. Chocron Benloulo, V. Sanchez-Galvez, A new analytical model to simulate impact onto ceramic/composite armors, International Journal of Impact Engineering. 21(6) (1998) 461–471. https://doi.org/10.1016/S0734-743X(98)00006-2
  • 19. S. Feli, M.E.A Aaleagha, Z. Ahmadi, A new analytical model of normal penetration of projectiles into the light-weight ceramic–metal targets, International Journal of Impact Engineering. 37(5) (2010) 561–567. https://doi.org/10.1016/j.ijimpeng.2009.10.006
  • 20. E. Medvedovski, Ballistic performance of armour ceramics: Influence of design and structure. Part 2, Ceramics International. 36 (2010) 2117-2127. https://doi.org/10.1016/j.ceramint.2010.05.022
  • 21. M.R.I. Islam, J.Q. Zheng, R.C. Batra, Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models, International Journal of Impact Engineering. 137 (2020) e103469. https://doi.org/10.1016/j.ijimpeng.2019.103469
  • 22. G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics,1983.
  • 23. M. Übeyli, R.O. Yildirim, B. Ögel, Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites, Journal of Materials Processing Technology. 196 (2008) 356-364. https://doi.org/10.1016/j.jmatprotec.2007.05.050
  • 24. C.C. Holland, E.A. Gamble, F.W. Zok, V.S. Deshpande, R.M. McMeeking, Effect of design on the performance of steelalumina bilayers and trilayers, Mechanics of Materials. 91(1) (2015) 241-251. https://doi.org/10.1016/j.mechmat.2015.05.002
  • 25. B. Wang, G. Lu, On the optimisation of two-component plates against ballistic impact, J. Journal of Materials Processing Technology. 57 (1996) 141-145. https://doi.org/10.1016/0924- 0136(95)02050-0
  • 26. T. Demir, M. Übeyli, R.O. Yildirim, M.S. Karakas, Response of Alumina/4340 Steel Laminated Composites against the Impact of 7.62 mm Armor Piercing Projectiles, Science and Engineering of Composite Materials. 16(2) (2009) 89-98. https://doi.org/10.1515/SECM.2009.16.2.89
  • 27. M.E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets. International Journal of Engineering Science. 16(1) (1978) 1-99. https://doi.org/10.1016/0020- 7225(78)90002-2
  • 28. E.A., Flores-Johnson, M., Saleh, L., Edwards, Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile, International Journal of Impact Engineering. 38 (2011) 1022-1032. https://doi.org/10.1016/j.ijimpeng.2011.08.005
  • 29. T. Demir, M. Übeyli, R.O. Yıldırım, Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile, Materials & Design. 29 (2008) 2009- 2016. http://doi.org/10.1016/j.matdes.2008.04.010
  • 30. M. Übeyli, H. Deniz, T. Demir, B. Ögel, B. Gürel, Ö. Keleş, Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers, Materials & Design. 32(3) (2011) 165-1570. https://doi.org/10.1016/j.matdes.2010.09.025