Kolemanit ve Üleksit Atığı ile Sulu Çözeltilerden Metilen Mavisi Giderimi: Kinetik ve İzoterm Değerlendirmesi

Bu çalışmanın amacı, bor endüstrisinden elde edilmiş kolemanit (KA) ve üleksit (UA) atıkları ile metilen mavisi (MB) boyarmaddesinin adsorpsiyon performansının değerlendirilmesidir. Çalışmada kesikli denemelerde, sabit adsorban dozu (1 mg/L), farklı pH (9, 11 ve 13), farklı temas süresi (0, 1, 5, 15, 30, 60, 90 ve 120 dakika) ve farklı başlangıç boyarmadde miktarında (10, 20, 30, 40 ve 50 mg/L) gerçekleştirilmiştir. KA ve UA'na ait kimyasal özellikler ve SEM görüntüleri belirlenmiştir. UA ile boyarmadde adsorpsiyonunda çözeltinin pH'ı 9'dan 13'e yükseltildiğinde giderme veriminde önemli değişiklik olmamış ve adsorpsiyon hızlı bir şekilde gerçekleşmiştir. Bütün denemelerde artan temas süresi ile adsorpsiyon artış göstermiştir. KA ve UA'ında MB adsosorpsiyonu için elde edilen R2değerlerine göre, Langmuir modeli Freundlich modeline göre daha uyumlu bulunmuştur. KA ve UA için elde edilmiş olan qmax değerleri sırasıyla 25.77 mg/g ve 47.62 mg/g'dir. KA ve UA'nda adsorpsiyon sırasıyla birinci derece ve ikinci derece kinetic modele uyumlu bulunmuştur. Lineer doğrular için elde edilen korelasyon katsayıları 1'e yakın bulunmuştur.

Removal of Methylene Blue with Colemanite and Ulexite Core Waste: Evaluation of Kinetic and Isotherm

The objective of this study is to evaluate the performance of colemanite (KA) and ulexite (UA) core waste which were obtained from boran industry in the removal of methylene blue (MB) from aqueous solution. Batch studies were performed to evaluate the influences of various experimental parameters like pH (9, 11 and 13), initial concentration (10, 20, 30, 40, 50 mg/L), and contact time (0, 1, 5, 15, 30, 60, 90, and 120 min). The chemical properties and SEM images were determined of adsorbents. It was observed that the dye uptake by UA was not changed significantly when the pH of dye solution was increased from 9 to 13 and uptake of dye was rapid. The adsorption increased with increasing contact time in all experiments. According to R2 values for the adsorption of MB on KA and UA, Langmuir model yields fit better than Freundlich model. The qmax values were obtained 25.77 mg/g and 47.62 mg/g for KA and UA, respectively. The pseudo-first order kinetic model and the pseudo-second order kinetic model yields the best fit for adsorption on KA and UA, respectively. The correlation coefficients of the model for the linear plots are very close to 1.

___

  • [1] Kaykioglu, G.; Debik, E. Anaerobik Arıtım Prosesleri ile Tekstil Atıksularından Renk Giderimi. Sigma Mühendislik ve Fen Bilimleri Dergisi. 2006; 4, 59-68.
  • [2] Kaykioğlu, G.; Güneş, E. Kinetic and Equilibrium Study of Methylene Blue Adsorption Using H2SO4-activated Rice Husk Ash. Desalination and Water Treatment. 2016; 57, 7085-7097. [3] Kılınç, E.; Mordoğan, H.; Tanrıverdi, M.Bor
  • Minerallerinin Önemi, Potansiyeli, Üretimi ve Ekonomisi, 4.Endüstriyel Hammaddeler Sempozyumu, İzmir, Türkiye, 18-19 Ekim, 2001.
  • [4] Hıncalan, E.B. Bor Endüstri Atıklarındaki Lityumun Adsorpsiyon Yöntemi ile Kazanılması, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Dumlupınar Üniversitesi, Ekim, 2010.
  • [5] Sarı, A.; Tuzen, M. Kinetic and Equilibrium Studies of Pb(II) and Cd(II) Removal from Aqueous Solution onto Colemanite Ore Waste. Desalination. 2009; 249, 260-266.
  • [6] Olgun, A.; Atar, N. Equilibrium and Kinetic Adsorption Study of Basic Yellow 28 and Basic Red 46 by a Boron Industry Waste. Journal of Hazardous Materials. 2009; 161, 148-156.
  • [7] Çopur, M.; Kocakerim, M.M.; Karakaş, İ.H. Basınçlı Reaktörde Karbondioksitin Atık Üleksit Cevheri ile Tutulmasının Optimizasyonu, 9.UKMK, Gazi Üniversitesi, Ankara, 2010.
  • [8] Olgun, A.; Atar, N. Equilibrium, Thermodynamic and Kinetic Studies for the Adsorption of Lead (II) and Nickel (II) onto Clay Mixture Containing Boron Impurity. Journal of Industrial and Engineering Chemistry. 2012; 18, 1751- 1757.
  • [9] Gupta, V. K.; Agarwal, S.; Olgun, A.; Demir, H.I.; Yola, M.L.; Atar, N. Adsorptive Properties of Molasses Modified Boron Enrichment Waste Based Nanoclay for Removal of Basic Dyes. Journal of Industrial and Engineering Chemistry. 2016; 34, 244-249.
  • [10] Kula, I.; Olgun, A.; Erdogan, Y.; Sevinc, V. Effects of Colemanite Waste, Cool Bottom Ash, and Fly Ash on the Properties of Cement. Cement and Concrete Research. 2001; 31, 491-494.
  • [11] Sahinkaya, H.U.; Ozkan, A. Investigation of Shear Flocculation Behaviors of Colemanite with some Anionic Surfactants and Inorganic Salts. Separation and Purification Technology. 2011; 80, 131-139.
  • [12] Yola, M.L.; Eren, T.; Atar N.; Wang, S. Adsorptive and Photocatalytic Removal of Reactive Dyes by Silver Nanoparticle-Colemanite Ore Waste. Chemical Engineering Journal. 2014; 242, 333-340.
  • [13] Atar, N.; Olgun, A. Removal of Acid Blue 062 on Aqueous Solution Using Calcinated Colemanite Ore Waste. Journal of Hazardous Materials. 2007; 146, 171-179.
  • [14] Sertkaya, G. Kolemanit Atıklardan Biyoliç Yöntemi ile Borik Asit Eldesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, 2007.
  • [15] Güç, E. Kolemanit İçeriğindeki Arseniğin Biyoliç ile Uzaklaştırılması, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, 2010.
  • [16] Tunc, M.; Kocakerim, M.M.; Yapici, S.; Bayrakçeken, S. Dissolution Mechanism of Ilexite in H2SO4 Solution. Hydrometallurgy. 1999; 51, 359-370.
  • [17] Atar, N.; Olgun, A.; Wang, S. Adsorption of Cadmium (II) and Zinc (II) on Boron Enrichment Process Waste in Aqueous Solutions: Batch and Fixed-Bed System Studies. Chemical Engineering Journal. 2012; 192,1-7.
  • [18] Olgun, A.; Atar, N. Removal of Copper and Cobalt from Aqueous Solution onto Waste Containing Boron Impurity. Chemical Engineering Journal. 2011; 167, 140-147.
  • [19] Ekmekyapar, A.; Demirkıran, N.; Kunkul, A. Dissolution Kinetics of Ulexite in Acetic Acid Solutions. Chemical Engineering Research and Design. 2008; 8 6, 1011- 1016.
  • [20] El-Halwany, M.M. Study of Adsorption Isotherms and Kinetic Models for Methylene Blue Adsorption on Activated Carbon Developed from Egyptian Rice Hull (Part II). Desalination. 2010; 250, 208-213.
  • [21] Gunes, E.; Kaygusuz, T. Adsorption of Reactive Blue 222 onto an Industrial Solid Waste Included Al(III) Hydroxide: pH, Ionic Strength, Isotherms, and Kinetics Studies. Desalination and Water Treatment. 2015; 53, 2510- 2517.
  • [22] Ayoob, S.; Gupta, A.K.; Bhakat, P.B.; Bhat, V.T. Investigations on the Kinetics and Mechanisms of Sorptive Removal of Fluoride from Water Using Alumina Cement Granules. Chem. Eng. J. 2008; 140, 6-14.
  • [23] Huang, Y.H.; Hsueh, C.L.; Cheng, H.P.; Su, L.C.; Chen, C.Y. Thermodynamics and Kinetics of Adsorption of Cu(II) onto Waste Iron Oxide. J. Hazard. Mater. 2007; 144, 406-411.
  • [24] Gupta, S.S.; Bhattacharyya, K. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A review. Adv. Colloid Interface Sci. 2011; 162, 39-58.
  • [25] Aydın, H.; Bulut, Y.; Yerlikaya, C. Removal og Copper (II) from Aqueous Solution by Adsorption onto Low-Cost Adsorbents, J. Environ. Manage. 2008; 87, 37-45.
  • [26] Naiya, T.K.; Bhattacharyaa, A.K.; Mandal, S.; Das, S.K. The Sorption of Lead(II) Ions on Rice Husk Ash, J. Hazard. Mater. 2009; 163, 1254-1264.
  • [27] Mane, V.S.; Mall, I.D.; Srivastava, V.C. Kinetic and Equilibrium Isotherm Studies for the Adsorptive Removal of Brilliant Green Dye from Aqueous Solution by Rice Husk Ash, J. Environ. Manage. 2007; 84, 390-400.
  • [28] Lakshmi, U.R.; Srivastava, V.C.; Mall, I.D.; Lataye, D.H. Rice Husk Ash as an Effective Adsorbent: Evaluation of Adsorptive Characteristics for Indigo Carmine Dye. J. Environ. Manage. 2009; 90, 710-720.
  • [29] Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. Comparison of Activated Carbon and Bottom Ash for Removal of Reactive Dye from Aqueous Solution, Bioresour. Technol. 2007; 98, 834-839.
  • [30] McKay, G.; Blair, H.; Gardiner, J.R. The Adsorption of Dyes onto Chitin in Fixed Bed Column and Batch Adsorbers, J. Appl. Polym. Sci. 1989; 28,1499-1544.
  • [31] Jain, C.K.; Kumar, A.; Izazy, H. Color Removal from Paper Mill Effluent Through Adsorption Technology. Environ Monit Assess. 2009; 149, 343-348.
  • [32] Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene Blue Adsorption on Graphene Oxide/Calcium Alginate Composites. Carbohydrate Polymers. 2013; 95, 501- 507.
  • [33] Hassan, A.F.; Abdel-Mohsen, A.M.; Fouda, M.M.G. Comparative Study of Calcium Alginate, Activated Carbon, and Their Composite Beads on Methylene Blue Adsorption. Carbohydrate Polymers. 2014; 102, 192-198.
  • [34] Wang, T.H.; Tan, S.X.; Liang, C.H. Preparation and Characterization of Activated Carbon from Wood via Microwave-Induced ZnCl2 Activation. Carbon. 2009; 47, 1867-1885.
  • [35] Kannan, N.; Sundaram, M.M. Kinetics and Mechanism of Removal or Methylene Blue by Adsorption on Various Carbons - a Comparative Study. Dyes Pigments. 2001; 51, 25-40.
  • [36] Auta, M.; Hameed, B.H. Modified Mesoporous Clay Adsorbent for Adsorption Isotherm and Kinetics of Methylene Blue. Chem. Eng. J. 2012; 198-199, 219-227.
  • [37] Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chemical Engineering Research and Design. 2013; 91, 361-368.
  • [38] Ahmeda, M.J.; Dhedan, S.K. Equilibrium Isotherms and Kinetics Modeling of Methylene Blue Adsorption on Agricultural Wastes-Based Activated Carbons. Fluid Phase Equilibria. 2012; 317, 9-14.
  • [39] Alaya, M.; Hourieh, M.; Youssef, A.; El-Sejarah, F. Adsorption properties of activated carbons prepared from olive stones by chemical and physical activation. Adsorption Sci. Technol. 1999, 18, 27-42.
  • [40] Aygun, A.; Yenisoy-Karakas, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003; 66, 189-195.
  • [41] Dahri, M.K.; Kooh, M.R.R.; Linda, B.L.; Lim, L.B.L. Water Remediation Using Low Cost Adsorbent Walnut Shell for Removal of Malachite Green: Equilibrium, Kinetics, Thermodynamic and Regeneration Studies. J. Environ. Chem. Eng. 2014; 2, 1434-1444.
  • [42] Hameed, B.H.; El-Khaiary, M.I. Batch Removal of Malachite Green from Aqueous Solutions by Adsorption on Oil Palm Trunk Fibre: Equilibrium Isotherms and Kinetic Studies, Journal of Hazardous Materials, 2008; 154, 237-244.
  • [43] Azizian, S. Kinetic Models of Sorption: a Theoretical Analysis. Journal of Colloid and Interface Science. 2004; 276, 47-52.