Fungal ve Arkeal Kaynaklı Lipazların Eldesi, Aktivitelerinin Kıyaslanması ve Kağıt Üretiminde Kullanımı

Lipaz, gıda teknolojisi, klinik ve endüstriyel kimya gibi birçok biyoteknolojik alanda yaygın olarak kullanılan bir enzimdir. Endüstriyel alanda kullanılan lipazların çoğu funguslardan elde edilir. Bu enzimler ticari olarak satılmaya uygun olup saflaştırılır ve immobilize hale getirilir. Ancak tüm bu işlemler ürünün maliyetini arttırdığından son ürün haline dönüşen lipaz enzimi oldukça pahalıdır. Kağıt üretiminde karşılaşılan problemlerin en önemlilerinden biri odun ekstraktiflerinin kağıt hamuru ve kağıtta kaliteyi düşürmesi ve atık sularda toksisite oluşturmasıdır. Bu yapışkan bileşiklerden biyolojik yolla kurtulmak amacıyla lipaz enzimi kullanılabilir. Bu çalışmada, çürükçül bir fungus olan Phanerochaete chrysosporium ile bir halofilik arke olan Haloarcula hispanica’dan elde edilen ekstraselüler lipazların aktivite tayini yapılmış ve geri dönüşümlü karton üretimi proseslerinden alınan kağıt hamuru numunelerine uygulanmıştır. Aseton ekstraksiyonuna tabi tutulan kağıt hamuru numunelerine nem analizi yapıldıktan sonra lipaz eklenmiştir. Hidrolizi daha detaylı ölçmek amacıyla asit değeri analizi yapılarak serbest yağ asidi miktarını belirlemek amacıyla gaz kromatografi uygulanmıştır. Sonuçlar, P. chrysosporium ve H. hispanica’dan düşük maliyetle elde edilen lipaz enzimlerinin herhangi bir saflaştırma veya immobilizasyon yapılmaksızın aktivite gösterdiğini ve lipofilik bileşiklerin hidrolizinde etkin biçimde kullanılabileceğini göstermiştir.

Production of Fungal and Archaeal Lipases, Comparison of their Enzymatic Activities and Utilization in Paper Production

Lipases are used extensively in biotechnological fields such as food technology, clinical and industrial chemistry. Many industrially used lipases are prepared from fungi. Hence, their consideration as industrially relevant enzymes includes purification and immobilization processes which means an increase in the price of the final product. One of the most important problems in paper production is wood extractives so-called pitch that cause low quality pulp and paper, and create waste water toxicity. Lipase could be used for the hydrolysis of those sticky compounds as a biological approach. In this study, extracellular lipases of a fungus Phanerochaete chrysosporium and a halophilic archaeon Haloarcula hispanica were used in pitch component and sticky material degradation in recycled paper production in comparison with controls. Acetone extraction was applied on the samples. After the determination of the enzyme activity lipases were added to the pulp samples. The amount of free fatty acids were determined by acid value analysis in order to get a better quantification of the hydrolysis. Also gas chromatography was applied. The results demonstrated that P. chrysosporium and H. hispanica extracellular lipases have substantially high enzyme activity without any purification or immobilization processes and can be efficiently used for the hydrolysis of lipophilic compounds in an environmentally friendly approach.

___

  • 1. Rousu, P.; Rousu, P.; Anttila, J. Sustainable Pulp Production from Agricultural Waste, Resources, Conservation, and Recycling, 2002; 35, 85-103.
  • 2. Hoekstra, P.M.; May, O.W. Developments in the Control of Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal, 1990; 2, 446-450.
  • 3. Kenny, R.M.; Engstrom, G.G. New Technology for Stickies. Recycling Paper: From Fiber to Finished Product. Tappi Journal 1990; 2, 531-535.
  • 4. Pommier, J.-C.; Fuentes J.-L.; Goma G. Using Enzymes to Improve the Process and the Product Quality in the Recycled Paper Industry. I: The Basis Laboratory Work. Tappi Journal 1989; 72, 187-191.
  • 5. Bajpai, P.K. Solving the Problems of Recycled Fiber Proces-sing with Enzymes. Bioresources, 2010; 5, 1311-1325.
  • 6. Pala, H.; Lemos, M.A.; Mota, M.; Gama, F.M. Enzymatic Upgrade of Old Paperboard Containers, Enzyme and Microbial Technology. 2001; 29, 274-279. 7. Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S.; Microbial Xylanases and Their Industrial Applications: A Review. Applied MicroBiology and Biotechnology, 2001; 56, 326-338.
  • 8. Gutierrez, A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. The Biotechnological Control of Pitch in Paper Pulp Manufacturing. Trends in biotechnology, 2001; 19, 340-348.
  • 9. Martinez-Inigo, M.J.; Gutierrez , A.; del Rio, J.C.; Martinez, M.J.; Martinez, A.T. Time Course of Fungal Removal of Lipophilic Extractives From Eucalyptus globulus Wood. Journal of biotech-nology, 2000; 84, 119-126.
  • 10. Fischer, K.; Puchinger, L.; Schloffer, K.; Kreiner, W.; Messner, K. Enzymatic Pitch Control of Sulfite Pulp On Pilot Scale. Journal of biotechnology, 1993; 27, 341-348.
  • 11. Gutierrez, A.; Romero, J.; del Rio, J.C. Lipophilic Extractives in Process Waters During Manufacturing of Totally Free Kraft Pulp from Eucalypt Wood. Chemosphere, 2001; 44, 1237-1242.
  • 12. del Rio, J.C.; Romero, J.; Gutierrez, A. Analysis of Pitch Depo-sits Produced in Kraft Pulp Mills Using a Totally Chlorine Free Bleaching Sequence, Journal of Chromatogrphy A, 2000; 874, 235-245.
  • 13. Hata, K.; Matsukura, M.; Taneda, H.; Fujita, Y. Mill-Scale Application of Enzymatic Pitch Control During Paper Production. ACS Publications, Chapter 22, 1996; 280-296.
  • 14. del Rio, J.C.; Gutierrez, A.; Gonzalez-Vila, F.J. Analysis of Impurities Occurring in a Totally Chlorine Free-Bleached Kraft Pulp, Journal of Chromatogrphy A, 1999; 830, 227-232.
  • 15. Gutierrez, A.; del Rio, J.C.; Martinez, A.T. Fungi and Their Enzymes for Pitch Control in the Pulp and Paper Industry Indust-rial Applications, 2nd Edition, The Mycota X, M. Hofrichter (Ed.), © Springer-Verlag Berlin Heidelberg. 2010.
  • 16. Adav, S.S.; Ravindran, A.; Sze, S.K. Quantitative Proteomic Analysis of Lignocellulolytic Enzymes by Phanerochaete chrysos-porium on Different Lignocellulosic Biomass. Journal of prote-omics, 2012; 75, 1493-1504.
  • 17. Asther, M.; Lesage, L.; Drapron, R.; Corrieu, G.; Odier, E. Phospholipid and Fatty Acid Enrichment of Phanerochaete Chry-sosporium INA-12 in Relation to Ligninase Production. Applied microbiology and biotechnology, 1988; 27, 393-398.
  • 18. Attar, A.; Ogan, A.; Yucel, S.; Turan, K. The potential of Arc-haeosomes as Carriers of pDNA into Mammalian Cells. Artificial Cells Nanomedicine Biotechnology, 2016; 44, 710-716.
  • 19. Özgen, M.; Attar, A.; Elalmış, Y.; Birbir, M.; Yücel, S. Enzymatic Activity of a Novel Halotolerant Lipase from Haloarcu-la hispanica 2TK2. Polish Congresses on Chemical Technology, 2016; 18, 20-25.
  • 20. Wymelenberg, A. V.; Minges, P.; Sabat, G.; Martinez, D.; Aerts, A.; Salamov, A.; Dosoretz, C. Computational Analysis of the Phanerochaete chrysosporium v2. 0 Genome Database and Mass Spectrometry Identification of Peptides in Ligninolytic Cultu-res Reveal Complex Mixtures of Secreted Proteins. Fungal Genet-ics and Biology. 2006; 43, 343-356.
  • 21. Striby, L.; Lafont, R.; Goutx, M. Improvement in the Iatros-can Thin-Layer Chromatographic-Flame Ionisation Detection Analysis of Marine Lipids. Separation and Quantitation of Mono-acylglycerols and Diacylglycerols in Standards and Natural Samp-les. Journal of Chromatography A, 1999; 849, 371-380.