Farklı Konsantrasyonlarda Tuz Stresi Uygulanmış Mercimek Bitkilerine (Lens culinaris) Bor İlavesinin Bitki Mineral Değişimi Üzerindeki Etkileri

Ortam koşullarının bitkinin normal gelişimini negatif bir şekilde etkilemesiyle bitkide oluşan duruma stres adı verilir. Bitkilerde başlıca stres çeşitleri, su (kuraklık), tuz, sıcaklık, soğuk, don, ışık, hastalık, su taşkını (fazla su), hava kirliliği, metal ve oksidatif strestir. Tüm dünyada sulanabilir tarım alanlarının yaklaşık %33’nün tuzdan etkilendiği ve bu bölgelerde yetiştirilen bitkilerde tuz stresi oluştuğu bilinmektedir. Bu çalışmada iki farklı mercimek türü (kırmızı ve yeşil) kullanıldı. Mercimek bitkilerine 50 ve 200 mM tuz stresi uygulandı. Tuz stresinin olumsuz etkilerini azaltmak amacıyla ortama ayrıca 0.5, 1.0, 2.0, 5.0 mM bor ilave edildi. Bitkiler 7 gün boyunca izlendi ve 7. günün sonunda gövde, kök uzunlukları, taze gövde, kök ağırlıkları, K, Na, B ve Ca içerikleri incelendi. Elde edilen bulgulara göre 50 ve 200 mM tuz konsantrasyonlarında kontrol gruplarına göre hem kırmızı hem de yeşil mercimek bitkilerinde gövde-kök uzunluklarında, taze gövde-kök ağırlıklarında, K, B ve Ca içeriklerinde azalmaların olduğu tespit edildi. Fakat kırmızı mercimekteki tuz stresinden etkilenmenin yeşil mercimeğe göre daha yüksek oranda olduğu gözlemlendi. Tuz stresine karşı iyileştirici etki olarak ilave ettiğimiz bor konsantrasyonlarında 0.5 ve 1.0 mM bor miktarının gövde-kök uzunluklarında, taze gövde-kök ağırlıklarında K, Ca alınımında pozitif etki gösterdiği deneyler sonucu elde edildi. Bu çalışmada tuzlu topraklarda yetişen bitkilerde, tuz stresinden kaynaklanan olumsuz etkileri en aza indirebilmek amaçlandı. Bunun için bitki yetişme ortamına farklı derişimlerde bor ilave edilerek bitki gelişimi incelendi. Bitki materyali olarak Türkiye’de ve dünyada tarımı büyük oranda yapılan mercimek bitkileri kullanıldı. Elde edilen sonuçlara göre borun 0.5 ve 1.0 mM konsantrasyonlarında tuzlu topraklarda iyileştirici bir gübre olarak verilebileceği tespit edildi.

Boron Effect on Growth and Mineral Content of Lentil Plant (Lens culinaris) Under Salt Stress

Stress on plants is described as the negative impact resulted from altered growth conditions. Drought, salt, heat, cold, frost, flood, air pollution, metal and oxidative stress are the common stress causing factors for plants. 33% of the farming lands, worldwide, is under salt stress.  In this study, red and green lentil species were used, which were exposed to 50 mM and 200 mM NaCl-stress. Boron, in contrast to this, were introduced to the lentil growing media at 0.5, 1.0. 2.0 and 5.0 mM boron concentrations to overcome stress arose from the salt. Plants were observed for 7 days, followed by length of shoot and root, fresh weight shoot and root, and K, Na, B and Ca contents were evalutated at the end of the 7th day. At 50 and 200 mM concentratins of NaCl for both red and green lentils length of shoot and root, fresh weight shoot and root, K and Ca contents were diminished; the stress were harsher on red lentil. Boron at 0.5 ve 1.0 mM concentrations reduced salt stress, and ameliorated shoot-root length, fresh shoot-root weight and K and Ca intake. The goal of this study was to minimize negative impacts of salt on plants farmed in high-salt containing soils. In the followed approach, boron was administrated to lentil growing media, which is widely farmed in Turkiye and all around the world. The results depicting that boron at 0.5 and 1.0 mM concentrations can be a supportive fertilizer to surrpass salt related stress.

___

  • 1. Büyük, İ, Soydam, S, Aras, S, Bitkilerin stres koşullarına verdiği moleküler cevaplar, Türk Hijyen ve Deneysel Biyoloji Dergisi, 2012, 69, 97-110.
  • 2. Smirnoff, N, Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions, antioxidants and reactive oxygen species in plants, Blackwell Publishing, Oxford, 2005, 53-86.
  • 3. Madencilik özel ihtisas komisyonu raporu, Devlet Planlama Teşkilatı, Ankara, 2001.
  • 4. Lichtenhaler, H.K, Vegetation stress: an introduction to the stress concept in plants, Journal of Plant Physiology, 1996, 148, 4-14.
  • 5. Raychaudhuri, S, The role of superoxide dismutase in combating oxidative stress in higher plants, Botanical Review, 2000, 66, 89-98.
  • 6. McKersie, B.D, Leshem, Y, Stress and stress coping in cultivated plants, Kluwer Academic Publishers, 1994, 256, 0-7923-2827-2.
  • 7. Asada, K, The water-water cycle in chloroplasts scavenging of active oxygens and dissipation of excess photons. Annual Review. Plant Physiololgy. Plant Molecular Biology, 1999, 50, 601-639.
  • 8. Carter, D.L, Problems of salinty in agricuture. Plants in saline Environments, 1975, 15, 25-35.
  • 9. Blum, A, Breeding Crop Varieties for stress Environments. CRC Critical Reviews in Plant Sciences, 1985, 2, 199-238.
  • 10. Serrano, R, Gaxiola, R, Microbial models and salt tolerance in plants, Critical Review Plant Sciences, 1994, 13, 121-138.
  • 11. Ghasemi, F, Jakeman, A.J, Nix, H.A, Salinisation of land and water resorces human causes extent manegement and case studies, CAB International, Wallinford, Oxon, P 526.
  • 12. Lopez, M.V, Satti, S.M.E, Calcium and potasium –enhanced growth and yield of tomato under sodium chloride stress. Plant Sciences, 1996, 114, 19-27.
  • 13. Çevik, B, Toprak Su Koruma Mühendisliği, Çukurova Üniversitesi Ziraat Fakültesi, Adana, 1986, Yayın 108.
  • 14. Sönmez, B, Tuzlu ve Sodyumlu Topraklar. TOKB Köy Hizmetleri Şanlı Urfa Araştırma Enstitüsü Müdürlüğü Yayınları, 1990, 62,60.
  • 15. Levitt, J, Responses of plants to environmental stresses, Academic Press, New York, 1980, 2,607.
  • 16. Munns, R, Termaat, A, Whole-Plant Responses to Salinity, Australian. Journal of Plant Physiol, 1986, 13, 143-160.
  • 17. Marschener, H, Mineral Nutrition of Higher Plants, Academic Press, 1995, 657-680.
  • 18. Karanlık, S, Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması, Ç.Ü. Fen Bil. Enst, Adana, 2001.
  • 19. Aktas, H, Biberde tuza dayanıklılığın fizyolojik karakterizasyonu ve kalıtımı, Ç.Ü Fen Bilimleri Enst, Adana, 2002, 105.
  • 20. Hoagland, D.R, Arnon, D.I, The water-culture method for growing plants without soil. California Agricultural Experiment Station Publications,1938, 347.
  • 21. Hernandez, J, Jimenez, A, Mullineaux, P, Sevilla, F, tolerance of pea plants (pisum sativum) to long-term salt stress is associated with ınduction of antioxidant defences, Plant Cell Environment, 2000, 23, 853-862.
  • 22. Takemura, T, Hanagata, N, Sugihara, K, Babab, S, Karube, I, Dubinsky, Z, Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza, Aquatic Botany, 2000, 68, 15–28.
  • 23. Molassiotis, A, Sotiropoulos, T, Tanou, G, Diamantidis, G, Therios, I, Boron induced oxidative damage and antioxidant and nucleolytic respons in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh), Environmental and Experimental Botany, 2006, 56, 54–62.
  • 24. Karabal, E, Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity, Plant Science, 2003, 164, 925-933.
  • 25. Fageria, V.D, Nutrient interactions in crop plants, Journal of Plant Nutrition, 2001, 24, 1269-1290.
  • 26. Lynch, J, Lauchli, A, Salt stress disturbs the calcium nutrition of barley (Hordeum vulgar L.), New Phytologist, 1985, 99, 345-354.
  • 27. Yakıt, S. Tuna, A.L, The Effects of Ca, K and Mg on the stress parameters of the maize ( Zea mays L. ) Plant under Salinity stress, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 2006, 19, 59-67.
  • 28. Nguyen, H.T.T, Shım, I.E, Effects of salt stress on ion accumulation and antioxidative enzyme activities of Oryza sativa L. and Echinochloa oryzicola Vasing, Weed Biology and Management, 2005, 5, 1–7.
  • 29. Parida A.K, Das, A.B, Mohanty P, Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes, Journal of Plant Physiology, 2004, 161, 531–542.
  • 30. Garcia, N.F, Martinez, V, Carvajal, M, Effect of salinity on growth, mineral composition and water relations of grafted tomato plants, Journal of Plant Nutrition and Soil Science, 2004, 167, 616-622.
  • 31. Rout, N.P, Shav, B.P, Salt tolerance in aquatic macrophytes, possible ınvolvement of the antioxidative enzymes, Plant Science, 2001, 160, 415-423.
  • 32. Eraslan, F, Inal, A, Savasturk, O, Gunes, A, Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity, Scientia Horticulturae, 2007, 114, 5-10.
  • 33. Baykal, Ş.A, Öncel, I, changes of soluble phenolic and soluble protein amounts on the tolerance of boron toxicity in wheat seedlings, C.Ü. Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 2006, 271