A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends

A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends

In our previous study, we prepared blends of lowdensity polyethylene (LDPE) with semiconductorpolymer, poly (1-amino-2-hydroxynaphthalene-4-sulfonic acid) (PANSA), in different mixing ratios. Inthat study, the findings on some physical and chemical properties of the blends prepared were alsopresented. In this study, it was aimed to investigate the thermal decomposition kinetics of these preparedblends. For this purpose, thermograms of PANSA doped LDPE blends at four different heating rates wereobtained. With the addition of PANSA into LDPE, it was observed that the initial decompositiontemperature and maximum decomposition temperature of LDPE increased. Thermal decompositionkinetics of blends were performed using the integral isoconversional methods (Kissinger, Kim-Park (KP),Tang, Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO)) in addition to differentialisoconversional method (Friedman method). The activation energy values calculated by Kissinger, KP,Tang, KAS, FWO and Friedman methods and found to be 187.9, 200.2, 171.90, 171.78, 171.70 and171.89 kJ mol-1for 0.5 % PANSA doped LDPE, 193.9, 206.2, 173.31, 172.87, 172.98 and 172.78 kJmol-1for 1 % PANSA doped LDPE and 207.0, 219.2, 196.94, 197.09, 198.08 and 208.10 kJ mol-1for 0.5% PANSA doped LDPE, respectively. Thermal decomposition mechanism for blends was proposed withthe help of master plot curves.

___

  • 1. Liu P., Tang H., Lu M., Gao C., Wang F., Ding Y., Zhang S., Yang M. 2017. Preparation of nanosilica-immobilized antioxidant and the anti-oxidative behavior in low density polyethylene Polymer Degradation and Stability, 135, 1-7.
  • 2. Ambrogi V., Panzella L., Persico P., Cerruti P., Lonz C.A., Carfagna C., Verotta L., Caneva E., Napolitano A., d’Ischia M. 2014. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules, 15, 302-310.
  • 3. Gao Y., Jiang F., Zhang L., Cui Y. 2016. Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polymer Bulletin, 73, 1343-1359.
  • 4. Zheng K., Tang H., Chen Q., Zhang L., Wu Y., Cui Y. 2015. Enzymatic synthesis of a polymeric antioxidant for efficient stabilization of polypropylene. Polymer Degradation and Stability, 112, 27-34.
  • 5. Wu Y., Jiang F., Chai C., Cui Y., Zhang L. 2018. Facile synthesis of oligo(4-methoxyphenol) in water and evaluation of its efficiency in stabilization of polypropylene. Polymers for Advanced Technologies, 29 (5),1518-1525.
  • 6. Doğan F., Kaya İ. and Temizkan K. 2015. Synthesis route to regioselectively functionalized bifunctional polyarene. Polymer International, 64,1639-1648.
  • 7. Doğan F., Şirin K., Kolcu F., Kaya I. 2018. Conducting polymer composites based on LDPE doped with poly(aminonaphthol sulfonic acid). Journal of Electrostatics, 94,85–9386.
  • 8. Kissinger H.E. 1957. Reaction kinetics in differential thermal analysis. Analytic Chemistry, 29 (11), 1702-1706.
  • 9. Kim S.D. and Park J.K. 1995. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochimica Acta, 264, 137-156.
  • 10. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochima Acta, 408, 39-43.
  • 11. Akahira T. and Sunuse T. T.1971. Joint convention of four electrical institutes research report, Chiba Institute of Technology, Chiba, 16, 22-31.
  • 12. Flynn, J.H., Wall, L.A. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4, 323-328.
  • 13. Ozawa T.1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38, 1881-1886.
  • 14. Friedman, H.L. 1964. Kinetic of thermal degradation of charforming plastics from thermogravometry. Application to a phenolic plastic. Journal of Polymer Science Polymer Symposium, 6, 183-195.
  • 15. Doyle C.D. 1962. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science 6, 639.
  • 16. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • 17. Kamel L.T. 2014. The kinetic analysis of non-isothermal carisoprodol reaction in nitrogen atmosphere using the invariant kinetic parameters method. European Journal of Chemistry, 5 (3), 507-512.
  • 18. Doğan F. 2017. Non-isothermal Decomposition Kinetic of Polypropylene Blends. Celal Bayar University Journal of Science, 13(2), 495-502.
  • 19. Şirin K., Doğan F., Şirin M., Beşergil B. 2017. Mechanical and thermal properties of Polypropylene (iPP)-High density polyethylene (HDPE) binary blends. Celal Bayar University Journal of Science, 13(1) 15- 23.
  • 20. Bilici A., Tezel R.N., Kaya İ., Doğan F. 2018. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. Celal Bayar University Journal of Science, 14(2), 187-193.
  • 21. Al-Salem S. M. , Bumajdad A. , A. R. Khan, Sharma B. K. , Chandrasekaran S. R., Al-Turki F. A. , Jassem F. H. , Al-Dhafeeri A. T. 2018. Non-isothermal degradation kinetics of virgin linear low density polyethylene (LLDPE) and biodegradable polymer blends, Journal of Polymer Research, 25, 111-127