The evaluation Of The Non-Toxic Ferrous Matrix Based WC Reinforced Composites: A Review

Metal matrix composites are mainly used as a cutting tool insert material. These types of materials are essential to maintain desired mechanical and microstructure properties at elevated temperatures due to friction and wear. Nano sized Tungsten Carbide reinforced composites are mostly used for these conditions. The production of sintered nano sized Tungsten Carbide reinforced composites are done by using powder metallurgy. The different mass ratios of elements including mostly Cobalt and the others could be added as binder phase. The binder phase provides to metal matrix composite superior features including high elasticity, good solubility, similar thermal conduction coefficient and, effective liquid phase sintering mechanism. Cobalt is one of the base elements of high-performance superalloys and rechargeable battery technology. Also, 40% of global need supplied by a single country makes itself higher-priced. It is also known that Cobalt is a high skin allergen and carcinogenic. Together with these obstacles, the investigations of low-cost, non-toxic, or reduced-toxicity materials are always needed. In this study, the related current literature has been investigated in detail. The studies focus on an alternative matrix that providing mentioned conditions explained with pros and cons.

___

  • 1. Eliasson, J. and Sandström, R., 1995 Applications of Aluminium Matrix Composites. Key Engineering Materials, 104-107: 3-36.
  • 2. German, R.M., Powder Metallurgy and Particulate Materials Processing. 2007, Princeton, New Jersey: Metal Powder Industry.
  • 3. Pierson, H.O., Handbook of Carbon, Graphite, Diamond and Fullerenes. 1993, Park Ridge: Noyes Publications.
  • 4. Davis, J.R., Alloying: Understanding the Basics. 2001, Ohio: ASM International.
  • 5. Patricia, A.P., Thomas, S.J., Metal Prices in the United States Through 1998. 1999, Reston: United States Government Printing Office.
  • 6. Fischer, T., Rystedt, I., 1983 Cobalt allergy in hard metal workers. Contact Dermatitis, 9(2): 115-121.
  • 7. Chen, J., Hou, G., Chen, J., An, Y., Zhou, H., Zhao, X., and Yang, J., 2012 Composition versus friction and wear behavior of plasma sprayed WC–(W,Cr)2C–Ni/Ag/BaF2–CaF2 self-lubricating composite coatings for use up to 600°C. Applied Surface Science, 261(15): 584-592.
  • 8. Fernandes, C.M., Senos, A.M.R., 2011 Cemented carbide phase diagrams: A review. International Journal of Refractory Metals and Hard Materials, 29(4): 405-418.
  • 9. Norgren, S. and García, J., 2018 On gradient formation in alternative binder cemented carbides. International Journal of Refractory Metals and Hard Materials, 73.
  • 10. Hou, Z., Linder, D., Hedström, P., Borgenstam, A., Holmström, E., and Ström, V., 2019 Effect of carbon content on the Curie temperature of WC-NiFe cemented carbides. International Journal of Refractory Metals and Hard Materials, 78: 27-31.
  • 11. Behl, M., Stout, M.D., Herbert, R.A., Dill, J.A., Baker, G.L., Hayden, B.K., Roycroft, J.H., Bucher, J.R., and Hooth, M.J., 2015 Comparative toxicity and carcinogenicity of soluble and insoluble cobalt compounds. Toxicology, 333(3): 195-205.
  • 12. Bhaumik, S.K., Upadhyaya, G.S., and Vaidya, M.L., 2013 Properties and microstructure of WC–TiC–Co and WC–TiC–MO2C–Co(Ni) cemented carbides. Materials Science and Technology, 7(8): 723-727.
  • 13. Bauccio, M., ASM Engineered Materials Reference Book. 1994, Ohio: ASM International.
  • 14. Luyckx, S., Osborne, C., Cornish, L.A., and Whitefield, D., 2013 Fine Grained WC–VC–Co Hardmetal. Powder Metallurgy, 39(3): 210-212.
  • 15. Upadhyaya, G.S., Cemented tungsten carbides production, properties, and testing. 2003, Westwood: Noyes Publications.
  • 16. Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties Characteristics, Processing and Application. 1996, Park Ridge: Noyes Publications.
  • 17. Miyoshi, A. and Hara, A., 1965 High Temperature Hardness of WC, TiC, TaC, NbC and Their Mixed Carbides. Journal of the Japan Society of Powder and Powder Metallurgy, 12(2): 78-84.
  • 18. Kohlstedt, D.L., 1973 The temperature dependence of microhardness of the transition-metal carbides. Journal of Materials Science, 8(6): 777-786.
  • 19. Kumashiro, Y. and Sakuma, E., 1980 The Vickers micro-hardness of non-stoichiometric niobium carbide and vanadium carbide single crystals up to 1500 C. Journal of Materials Science, 15(5): 1321-1324.
  • 20. Samsonov, G.V., Kovalchenko, M.S., Dzemelinskii, V.V., and Upadyaya, G.S., 1970 Temperature dependence of hardness of titanium carbide in the homogeneity range. Physica Status Solidi (a), 1(2): 327-331.
  • 21. Yang, J., Roa, J.J., Schwind, M., Odén, M., Johansson-Jõesaar, M.P., and Llanes, L., 2017 Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides. Materials Characterization, 134.
  • 22. Buchegger, C., Lengauer, W., Bernardi, J., Gruber, J., Ntaflos, T., Kiraly, F., and Langlade, J., 2015 Diffusion parameters of grain-growth inhibitors in WC based hardmetals with Co, Fe/Ni and Fe/Co/Ni binder alloys. International Journal of Refractory Metals and Hard Materials, 49: 67-74.
  • 23. Tracey, V.A., 1992 Nickel in hardmetals. International Journal of Refractory Metals and Hard Materials, 11(3): 137-149.
  • 24. Cramer, C.L., Preston, A.D., Elliott, A.M., and Lowden, R.A., 2019 Highly dense, inexpensive composites via melt infiltration of Ni into WC/Fe preforms. International Journal of Refractory Metals and Hard Materials, 82: 255-258.
  • 25. Upadhyaya, G.S. and Bhaumik, S.K., 1988 Sintering of submicron WC-10wt.%Co hard metals containing nickel and iron. Materials Science and Engineering: A, 105-106: 249-256.
  • 26. Bonny, K., De Baets, P., Vleugels, J., Huang, S., and Lauwers, B., 2009 Tribological Characteristics of WC-Ni and WC-Co Cemented Carbide in Dry Reciprocating Sliding Contact. Tribology Transactions, 52(4): 481-491.
  • 27. Tarragó, J.M., Ferrari, C., Reig, B., Coureaux, D., Schneider, L., and Llanes, L., 2015 Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. International Journal of Fatigue, 70: 252-257.
  • 28. Uhrenius, B., Forsén, K., Haglund, B.O., and Andersson, I., 1995 Phase equilibria and phase diagrams in carbide systems. Journal of Phase Equilibria, 16(5): 430-440.
  • 29. Bratberg, J. and Jansson, B., 2006 Thermodynamic evaluation of the C−Co−W−Hf−Zr system for cemented carbides applications. Journal of Phase Equilibria and Diffusion, 27(3): 213-219.
  • 30. Voitovich, V.B., Sverdel, V.V., Voitovich, R.F., and Golovko, E.I., 1996 Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800 °C. International Journal of Refractory Metals and Hard Materials, 14(4): 289-295.
  • 31. Guo, Z., Xiong, J., Yang, M., and Jiang, C., 2008 WC–TiC–Ni cemented carbide with enhanced properties. Journal of Alloys and Compounds, 465(1-2): 157-162.
  • 32. Penrice, T.W., 1987 Alternative binders for hard metals. Journal of Materials Shaping Technology, 5(1): 35-39.
  • 33. Kakeshita, T. and Wayman, C.M., 1991 Martensitic transformations in cermets with a metastable austenitic binder I: WC (Fe Ni C). Materials Science and Engineering: A, 141(2): 209-219.
  • 34. Kakeshita, T. and Wayman, C.M., 1991 Martensitic transformation in cermets with metastable austenitic binder: II. TiC (Fe Ni C). Materials Science and Engineering: A, 147(1): 85-92.
  • 35. Kumi, D.O., A Study Of WC-X Systems For Potential Binders For WC. 2011, University of the Witwatersrand: Johannesburg.
  • 36. Kirchner, G., Harvig, H., and Uhrenius, B., 1973 Experimental and thermodynamic study of the equilibria between ferrite, austenite and intermediate phases in the fe-mo, fe-w, and fe-mo-w systems. Metallurgical Transactions, 4(4): 1059-1067.
  • 37. Glasson, D.R. and Jones, J.A., 2007 Formation and reactivity of borides, carbides and silicides. I. Review and introduction. Journal of Applied Chemistry, 19(5): 125-137.
  • 38. Tyagi, A.K. and Banerjee, S., Materials under extreme conditions : recent trends and future prospects. 2017, Amsterdam: Elsevier.
  • 39. C. B. Pollock, H.H.S., 1970 The eta carbides in the Fe−W−C and Co−W−C systems. Metallurgical Transactions, 1(4): 767–770.
  • 40. Moskowitz, D., J., F.M., Humenik, J.s.M., High-Strength Tungsten Carbides. 1971, Michigan: Metal Powder Industries Federation.
  • 41. Schubert, W.D., Fugger, M., Wittmann, B., and Useldinger, R., 2015 Aspects of sintering of cemented carbides with Fe-based binders. International Journal of Refractory Metals and Hard Materials, 49: 110-123.
  • 42. Mosbah, A.Y., Wexler, D., and Calka, A., 2005 Abrasive wear of WC–FeAl composites. Wear, 258(9): 1337-1341.
  • 43. Alman, D.E., Tylczak, J.H., Hawk, J.A., and Schneibel, J.H., 2002 An assessment of the erosion resistance of iron-aluminide cermets at room and elevated temperatures. Materials Science and Engineering: A, 329-331: 602-609.
  • 44. Karimi, H., Hadi, M., Ebrahimzadeh, I., Farhang, M.R., and Sadeghi, M., 2018 High-temperature oxidation behaviour of WC-FeAl composite fabricated by spark plasma sintering. Ceramics International, 44(14): 17147-17153.
  • 45. Karimi, H., Hadi, M., 2020 Effect of sintering techniques on the structure and dry sliding wear behavior of WC-FeAl composite. Ceramics International, 46(11).
  • 46. Baker, I., Munroe, P.R., 2013 Mechanical properties of FeAl. International Materials Reviews, 42(5): 181-205.
  • 47. Schneibel, J.H., Carmichael, C.A., Specht, E.D., and Subramanian, R., 1997 Liquid-phase sintered iron aluminide-ceramic composites. Intermetallics, 5(1): 61-67.
  • 48. Kim, S.-E., Hong, S.-H., and Shon, I.-J., 2020 Mechanical Properties and Rapid Sintering of WC-BN-Al Composites. Korean Journal of Metals and Materials, 58(7): 453-458.
  • 49. Ahmadian, M., Wexler, D., Calka, A., and Chandra, T., 2003 Liquid Phase Sintering of WC-FeAl and WC-Ni3Al Composites with and without Boron. Materials Science Forum, 426-432: 1951-1956.
  • 50. Walbrühl, M., Linder, D., Ågren, J., and Borgenstam, A., 2018 Alternative Ni-based cemented carbide binder – Hardness characterization by nano-indentation and focused ion beam. International Journal of Refractory Metals and Hard Materials, 73: 204-209.
  • 51. De Oro Calderon, R., Agna, A., Gomes, U.U., and Schubert, W.-D., 2019 Phase formation in cemented carbides prepared from WC and stainless steel powder – An experimental study combined with thermodynamic calculations. International Journal of Refractory Metals and Hard Materials, 80: 225-237.
  • 52. Fernandes, C.M., Puga, J., and Senos, A.M.R., 2019 Nanometric WC-12 wt% AISI 304 powders obtained by high energy ball milling. Advanced Powder Technology, 30(5): 1018-1024.
  • 53. Tarraste, M., Kübarsepp, J., Juhani, K., Mere, A., Kolnes, M., Viljus, M., and Maaten, B., 2018 Ferritic chromium steel as binder metal for WC cemented carbides. International Journal of Refractory Metals and Hard Materials, 73: 183-191.
  • 54. Cacciamani, G., 2016 An Introduction to the Calphad Method and the Compound Energy Formalism (Cef). Tecnologia em Metalurgia Materiais e Mineração, 13(1): 16-24.
  • 55. Fernandes, C.M., Senos, A.M.R., and Vieira, M.T., 2003 Sintering of tungsten carbide particles sputter-deposited with stainless steel. International Journal of Refractory Metals and Hard Materials, 21(3-4): 147-154.
  • 56. Wittmann, B., Schubert, W.-D., and Lux, B., 2002 WC grain growth and grain growth inhibition in nickel and iron binder hardmetals. International Journal of Refractory Metals and Hard Materials, 20(1): 51-60.
  • 57. Gonzalez, R., Echeberria, J., Sanchez, J.M., and Castro, F., 1995 WC-(Fe,Ni,C) hardmetals with improved toughness through isothermal heat treatments. Journal of Materials Science, 30(13): 3435-3439.
  • 58. Soria-Biurrun, T., Lozada-Cabezas, L., Ibarreta-Lopez, F., Martinez-Pampliega, R., and Sanchez-Moreno, J.M., 2020 Effect of chromium and carbon contents on the sintering of WC-Fe-Ni-Co-Cr multicomponent alloys. International Journal of Refractory Metals and Hard Materials, 92.
  • 59. Danielsson, O., Effect of carbon activity on microstructure evolution in WC-Ni cemented carbides, in Materials Science and Engineering. 2018, KTH Royal Institute of Technology: Stockholm. p. 72.
  • 60. Tian, H., Chen, J., Zhu, G., Du, Y., and Peng, Y., 2019 Investigation of WC–Co alloy properties based on thermodynamic calculation and Weibull distribution. Materials Science and Technology, 35(18): 2269-2274.
  • 61. Guillermet, A.F., 1987 Assessment Of The Fe-Ni-W-C Phase Diagram. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 78(3): 165-171.
  • 62. Shi, X., Yang, H., Wang, S., Shao, G., and Duan, X., 2007 Influences of carbon content on the properties and microstructure of ultrafine WC-10Co cemented carbide. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(3): 473-477.
  • 63. Upadhyaya, G.S., 1994 Electronic mechanism of sintering: Some case studies on real systems. Bulletin of Materials Science, 17(6): 921-934.
  • 64. Kalsi, N.S., Sehgal, R., Sharma, V.S., 2014 Effect of tempering after cryogenic treatment of tungsten carbide–cobalt bounded inserts. Bulletin of Materials Science, 37(2): 327-335.
  • 65. Acet, M., Schneider, T., Wassermann, E.F., 1995 Magnetic Aspects of Martensitic Transformations in FeNi Alloys. Le Journal de Physique IV, 05(C2): 105-109.
  • 66. Li, B., Zhang, S., Zhang, T., Zhang, J., 2018 Effect of deep cryogenic treatment on microstructure, mechanical properties and machining performances of coated carbide tool. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1).
  • 67. Prakash, L.J., Development of tungsten carbide hardmetals using iron-based binder alloys. 1980, Virginia National Technical Reports Library. 221.
  • 68. Ahmadian, M., Wexler, D., Chandra, T., Calka, A., 2005 Abrasive wear of WC–FeAl–B and WC–Ni3Al–B composites. International Journal of Refractory Metals and Hard Materials, 23(3): 155-159.
  • 69. Long, J.-z., Zhang, Z.-j., Xu, T., Peng, W., Wei, X.-y., Lu, B.-z., and Li, R.-q., 2012 WC–Ni3Al–B composites prepared through Ni+Al elemental powder route. Transactions of Nonferrous Metals Society of China, 22(4): 847-852.
  • 70. Shon, I.-J., Na, K.-I., Ko, I.-Y., Doh, J.-M., Yoon, J.-K., 2012 Effect of FeAl3 on properties of (W,Ti)C–FeAl3 hard materials consolidated by a pulsed current activated sintering method. Ceramics International, 38(6): 5133-5138.
  • 71. Almond, E.A. Roebuck, B., 1988 Identification of optimum binder phase compositions for improved WC hard metals. Materials Science and Engineering: A, 105-106(Part 1): 237-248.
  • 72. Correa, E.O., Santos, J.N., Klein, A.N., 2010 Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy. International Journal of Refractory Metals and Hard Materials, 28(5): 572-575.
Celal Bayar Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 1305-130X
  • Başlangıç: 2005
  • Yayıncı: Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü