The Effects of Magnetic Iron Oxide Nanoparticles (Fe3O4) on Some Biological Aspects of Galleria mellonella L. (Lepidoptera: Pyralidae)

In this study, 18-38 nm-sized and spherical-shaped nanopowder Fe3O4 NPs concentrations (0.4, 2, 10, 50, 250 µg/10 µl) was force-fed to sixth instar (180 ± 20 mg) Galleria mellonella (Lepidoptera: Pyralidae) larvae under laboratory conditions. The effects of magnetic iron oxide nanoparticles (Fe3O4) on the pupal and adult developmental times, pupal and adult weights and adult longevity of G. mellonella were recorded. Results showed that treating G. mellonella with 250 μg/10 µl Fe3O4 NPs significantly increased pupal weights. Additionally, while adult developmental time increased post 250 μg/10 µl Fe3O4 NPs treatment, it was observed that pupal developmental time, pupal and adult weights, and adult longevity were not statistically significantly different when compared to the control

___

  • 1. Tunca Üçüncü, E. 2015. Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyon, Ordu Üniversitesi Bilim ve Teknoloji Dergisi 5, 2: 23-34.
  • 2. Marangoz, Ö, & Yavuz, O. 2020. Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri, Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 77(4).
  • 3. Pandey P, Dahıya M. A Brıef review on inorganıc nanopartıcles, Journal of Critical Reviews, 3(3):18-26.
  • 4. Uyanikgil, E. Ö. Ç, & Salmanoğlu, D. S. 2020. Metalik nanopartiküllerin hedeflendirilmesi, Ege Tıp Dergisi, 59(1), 71-81.
  • 5. Abou El-Nasr M. K, El-Hennawy H. M, El-Kereamy A. M. H, Abou ElYazied A, Salah Eldin A. T. 2015. Efect of magnetite nanoparticles (Fe3O4) as nutritive supplement on pear saplings. Middle East Journal of Applied Sciences, 5:777–785.
  • 6. Rezapour-Osalou, P, Tajbakhsh, M, Asri-Rezaei, S, & Hasanzadeh, A. 2015. Foliar application of nano-Fe3O4 induced iron content and phytase activity in corn seed Single Cross 704, Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 664-671.
  • 7. Jalali, M, Ghanati, F, & Modarres-Sanavi, A. M. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop and Pasture Science, 67(6), 621-628.
  • 8. Ünşar, E. K, & Perendeci, N. A. 2016. Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 503-512.
  • 9. Zorlu T, Nurullahoğlu Z. U, Altuntaş, H. 2018. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae), Journal of the Entomological Research Society, 20(3):89–103.
  • 10. Eskin, A, Öztürk, Ş, & Körükçü, M. 2019. Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods, Ecotoxicology, 28(7), 801-808.
  • 11. Eskin, A, & Bozdoğan, H. 2021. Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes, Drug and Chemical Toxicology, 1-11.
  • 12. Tuncsoy, B, & Mese, Y. 2021. Influence of titanium dioxide nanoparticles on bioaccumulation, antioxidant defense and immune system of Galleria mellonella L., Environmental Science and Pollution Research, 1-9.
  • 13. Ramarao N, Nielsen-Leroux C, Lereclus D. 2012. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis, Journal of Visualized Experiments, 70: 4392.
  • 14. IBM-SPSS Statistics for Windows. 2011. Version 20.0. Elsevier, London, UK. IBM Corp. Released. Armonk, NY: IBM Corp.
  • 15. Manna, M, Bhave, K, & Pathak, A. S. 2021. Adhesive scale formation on low silicon steel surface; characterization and mechanism, ISIJ International, ISIJINT-2020. 16. Morel, M, Martínez, F, & Mosquera, E. 2013. Synthesis and characterization of magnetite nanoparticles from mineral magnetite. Journal of Magnetism and Magnetic Materials, 343, 76-81.
  • 17. Pappus, S. A, & Mishra, M. 2018. A drosophila model to decipher the toxicity of nanoparticles taken through oral routes, Cellular and Molecular Toxicology of Nanoparticles, 311-322.
  • 18. Malhotra, N, Lee, J. S, Liman, R. A. D, Ruallo, J. M. S, Villaflores, O. B, Ger, T. R, & Hsiao, C. D. 2020. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules, 25(14), 3159.
  • 19. Qiang X, Hongxia S, Yinghua S, Dexiang U. G, Zhang G. 2005. Apoptosis of Spodoptera litura larval hemocytes induced by heavy metal zinc, Chinese Science Bulletin, 50(24): 2856-2860.
  • 20. Das S, Debnath N, Patra P, Datta A, Goswami A. 2012. Nanoparticles influence on expression of cell cycle related genes in Drosophila: a microarray-based toxicogenomics study, Toxicological & Environmental Chemistry, 94:952–7.
  • 21. Chen, H, Wang, B, Feng, W, Du, W, Ouyang, H, Chai, Z, & Bi, X. 2015. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence, Nanotoxicology, 9(3), 302-312.
  • 22. Yasur, J, & Rani, P. U. 2015. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology, Chemosphere, 124, 92-102.
  • 23. Meng, X, Abdlli, N, Wang, N, Lü, P, Nie, Z, Dong, X., ... & Chen, K. 2017. Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori), Biological Trace Element Research, 180(2), 327-337.
  • 24. Shinoda, T. 2016. Methyl farnesoate. In Handbook of Hormones (pp. 566-e100). Academic Press.
  • 25. Tüven, A. 2006. Farklı dozlarda konağa verilen gibberellik asitin parazitoit Apanteles galleriae Wilkinson (Hymenoptera: Braconidae) biyolojisine etkileri (Master's thesis, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü).