Sodium Arsenic Alters the Gene Expression of some Steroidogenic Genes in TM3 Leydig Cell

Arsenic is a broad-spectrum environmental contaminant with mutagenic, teratogenic and carcinogenic effects. Due to its widespread distribution in nature, drinking water is the most common source of arsenic exposure for the general population. In this study, we aimed to determine the effect of sodium arsenite on the viability and expression profile of steroidogenic genes in TM3 Leydig cells, responsible for testicular steroidogenesis. The TM3 Leydig cells were treated with sodium arsenic (384,8 µM or 7,6 mM) for 24 hours with LH (Luteinizing hormone) stimulation. The MTT assay was used for measuring cell viability, the expression level of key genes of the steroidogenesis was evaluated using RT-qPCR.The MTT assay showed that cell viability was decreased dose-dependently. RT-qPCR demonstrated that the expression level of CYP11A1, CYP17A1 were decreased as compared to the untreated control while StAR gene expression was found to be surprisingly high in the cell exposed to high-dose arsenic (p<0.05). The expression profile of two dehydrogenase; 17β-HSD and 3β-HSD was significantly reduced in high dose arsenic treated-group (p<0.05); but however, no statistical significance was found in low-dose. The RT-qPCR also showed that the expression SF-1 (Steroidogenic factor-1), a key regulator of adrenal and reproductive development, was significantly decreased in both low-dose and high-dose (p<0.05). Arsenic toxicity in Leydig cell leads to cell viability loss and cause a perturbation in key steroidogenic genes, reflecting the possible role of arsenic in infertility and male reproductive system disorders.

___

  • 1. Lee, P, Lee, I. 2005. Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicological sciences; 85.1: 541-550.
  • 2. Li, W.R, Chen, L, Chang, Z.J, Xin, H, Liu, T, Zhang, Y.Q, Xin, Z.C. 2011. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian journal of andrology ;881:13-6
  • 3. Chiou, T.J, Chu, S.T, Tzeng, W.F, Huang, Y.C, Liao, C.J. 2008. Arsenic trioxide impairs spermatogenesis via reducing gene expression levels in testosterone synthesis pathway. Chemical research in toxicology; 21.8: 1562-1569.
  • 4. El-Demerdash, Fatma, M, Mokhtar, I.Y. 2009. Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food and Chemical Toxicology; 47.1: 249-254.
  • 5. Mathur, N, Pandey, G, Jain, G.C. 2010. Male reproductive toxicity of some selected metals: A review. Journal of biological sciences; 10.5: 396-404
  • 6. Chang, S, Jin, B, Youn, P, Park, C, Park, J.D, Ryu, D.Y. 2007. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicology and applied pharmacology; 218.2: 196-203.
  • 7. Simeonova, P.P, Wang, S, Toriuma, W, Kommineni, V, Matheson, J, Unimye, N, Lusteri, M.I. 2000. Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer research; 60.13:3445-3453.
  • 8. Reitsma, M, Bovee, T.F, Peijnenburg, A.A, Hendriksen, P.J, Hoogenboom, RL, Rijk, J.C, 2013, Endocrine-disrupting effects of thioxanthone photoinitiators. Toxicological Sciences, 132(1), 64-74.
  • 9. Wang, R.S, Yeh, S, Tzeng, C.R, Chang, C. 2009. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocrine reviews; 30.2: 119-132.
  • 10. Camats, N, Audí, L, Fernández-Cancio, M, Andaluz, P, Mullis, P E, Carrascosa, A, Flück, C.E. 2015. LRH-1 May Rescue SF-1 Deficiency for Steroidogenesis: An in vitro and in vivo Study. Sexual development; 9.3: 144-154.
  • 11. Payne, A.H, Hales, D.B. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine reviews; 25.6: 947-970.
  • 12. Liu, Q, Wang, Y, Gu, J, Yuan, Y, Liu, X, Zheng, W, Bian, J. 2014. Zearalenone inhibits testosterone biosynthesis in mouse Leydig cells via the crosstalk of estrogen receptor signaling and orphan nuclear receptor Nur77 expression. Toxicology in Vitro, 28(4), 647-656.
  • 13. Kim, Y.J, Chung, J.Y, Lee, S.G, Kim, J.Y, Park, J.E, Kim, W.R, Kim, J.M. 2011. Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology; 285.3: 142-151.
  • 14. Khan, S, Telang, A.G, Malik, J.K. 2013. Arsenic-induced oxidative stress, apoptosis and alterations in testicular steroidogenesis and spermatogenesis in wistar rats: ameliorative effect of curcumin. WJPP; 2: 33-48.
  • 15. Chen, C.J, Wang, S.L, Chiou, J.M, Tseng, C.H, Chiou, H.Y, Hsueh, Y.M, Lai, M.S. 2007. Arsenic and diabetes and hypertension in human populations: a review. Toxicology and applied pharmacology; 222.3: 298-304.
  • 16. Payne, A.H, Youngblood, G.L. 1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biology of reproduction; 52.2: 217-225.
  • 17. Andric, S.A, Janjic, M.M, Stojkov, N.J, Kostic, T.S. 2007. Protein kinase G-mediated stimulation of basal Leydig cell steroidogenesis. American Journal of Physiology-Endocrinology and Metabolism; 293.5: E1399-E1408.
  • 18. Boonchai, W, Walsh, M, Cummings, M, Chenevix-Trench, G. 2000. Expression of p53 in arsenic-related and sporadic basal cell carcinoma. Archives of dermatology; 136.2: 195-198.
  • 19. Yang, J. Y, Zhang, Y.F, Liang, AM, Kong, XF, Li, Y.X, Ma, K.W, Qiao, X.L. 2009, Toxic effects of T-2 toxin on reproductive system in male mice, Toxicology and Industrial Health, 29 , 1166–1171M, Bovee, TF, Peijnenburg, AA, Hendriksen, PJ, Hoogenboom, RL, Rijk, JC. 2013. Endocrine-disrupting effects of thioxanthone photoinitiators. Toxicological Sciences; 132.1: 64-74.
  • 20. Yildizbayrak, N, Erkan, M. 2018. Acrylamide disrupts the steroidogenic pathway in Leydig cells: possible mechanism of action. Toxicological & Environmental Chemistry; 100(2), 235-246.