Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control

Viscous friction occurs between the roller guide shoes and guide rail because of the grease layer.This friction causes to vibration on the cage. This study’s aim is an investigation and active control of that vibration for passengers. Initially, the passenger elevator’s dynamics modeling is carried out by Linear Graph Method. The DC motor and AC motor parameters are used in the system modeling separately. Then, vibrations occurred on the elevator cabin are observed. Finally, the effect of vibrations is reduced with the aid of an active controller. The time and frequency responses are compared for two kinds of the motor.

___

  • 1. Dursun, M, Saygın, A. 2006. Bir asansör tahrik sistemi için bulanık mantık denetimli anahtarlamalı relüktans motor sürücüsüta sarımı. Journal of Engineering Sciences; 12, 151-160.
  • 2. Bolat, B. 2006/2. The Simulation and Optimization of Lift Control Systems with Genetic Algoritms. Journal of engineering and natural sciences.
  • 3. Erdem, E, Dallı, L. Asansörlerde Yağlamalarin Önemi, EMO Asansör Sepmpozyumu, 2008, Izmir, Turkey, pp 214-237.
  • 4. Yasunobu, S, Miyamoto, S, Ihara, H. 1983. Fuzzy Control for Automatic Train Operation System. IFAC Proceedings Volumes; 33-39.
  • 5. Suganthi, L, Iniyan, S, Anand, A.S. Applications of fuzzy logic in renewable energy systems. A review, Renewable and Sustainable Energy Reviews, 2015, pp 585-607.
  • 6. Koenig, H.E, Tokad, Y, Kesavan, H.K. Analysis of Discrete Physical Systems, McGraw-Hill Press: New York, USA, 1967.
  • 7. Roe, P. Networks and Systems; Addison-Wesley Press: Reading, MA, 1966.
  • 8. Andrews, G.C, Kesavan, H.K. The vector-network model: A new approach to vector dynamics, Mechanism and Machine Theory, 1975, pp 57-75.
  • 9. George B, Kesavan H.K. From particle-mass to multibody systems: graph-theoretic modeling, IEEE Trans. Systems, Man, and Cybernetics, 1997, pp 244-250.
  • 10. McPhee, J. Automatic Generation of Motion Equations for Planar Mechanical Systems Using the New Set of ‘Branch Coordinates’, Mech. Mach. Theory, 1998, pp 805–823.
  • 11. Y. Ercan, Mühendislik Sistemlerinin Modellenmesive Dinamiği; Literatür Yayınları: Istanbul, Turkey, 2009, pp 220-221.
  • 12. Liang, B, Zhu, D, Cai, Y. 2001. Dynamic Analysis of the Vehicle–Subgrade Model of A Vertical Coupled System. Journal of Sound and Vibration; 79-92.
  • 13. Wilson E. L, Farhoomand, I, Bathes, K.J. 1972. Nonlinear dynamic analysis of complex structures. Earthquake Engineering Structural Dynamics; 241-252.
  • 14. Muscolino, G, Ricciardi, G, Impollonia, N. 2000. Improved dynamic analysis of structures with mechanical uncertainties under deterministic input, Probabilistic Engineering Mechanics; 199-212.
  • 15. Derek, R, David N.W. System Dynamics – An Introduction; Prentice Hall Upper Saddle River Press: New Jersey, USA, 1997.
  • 16. Imrak, C.E. Gerdemli I. Asansörler ve Yürüyen Merdivenler; Birsen Yayınevi: Istanbul, Turkey, 2000.
  • 17. Rüdinger, F. 2007. Tuned mass damper with nonlinear viscous damping. Journal of Sound and Vibration; 932-948.
  • 18. Terenzi, G. 1999. Dynamics of SDOF systems with nonlinear viscous damping. Journal of Engineering Mechanics; 956–963.
  • 19. Zadeh, L.A. Fuzzy sets, Information and Control, 1965, pp 338-353.
  • 20. Cheung, J.Y.M, Kamal, A.S. Fuzzy Logic Control of refrigerant flow, UKACC International Conference on Control, 1996, pp 2-5.