Evaluation of Graft Harvesting Operations from Anterior and Posterior Iliac Donor Sites by Finite Element Analysis

Evaluation of Graft Harvesting Operations from Anterior and Posterior Iliac Donor Sites by Finite Element Analysis

When the graft donor areas are evaluated in terms of bone reserve and functional aspects, it can be said that the iliac site has outstanding properties. However, complications of graft harvesting operations performed from various iliac donor sites have been reported by many researchers. Numerous studies have been carried out in the literature to reduce these complications, and to increase the success of the operation. However, biomechanical comparison of anterior and posterior iliac graft harvesting operations is one of the gaps in the literature. This study aims to assess both biomechanical behavior and bone graft reserve comparison of the two surgical operation alternatives. According to the FEA results of the study, posterior iliac graft harvesting provides 264% more trabecular bone reserve than anterior operation. However, this rate is 132% for cortical bone. When the models are compared, anterior osteotomy model has a 8.6% higher von Mises strain compared to the posterior osteotomy model. Results of the present study has shown that the region with the highest stress value in the cortical bone is the sacroiliac joint for both models. While posterior graft harvesting operation offers advantages in terms of morbidity rate, joint fracture risk and graft reserve, anterior operation can be preferred in terms of operational ease and the sacroiliac joint stability. However, since results obtained may be affected by the factors such as the amount of graft harvested, the patient's bone quality, anatomical differences, age and gender, it has been evaluated that the success of the operation may be enhanced by carrying out a patient-specific approach for modeling and analysis steps.

___

  • Abdulrazaq, S. S., Issa, S. A., & Abdulrazzak, N. J. (2015). Evaluation of the Trephine Method in Harvesting Bone Graft From the Anterior Iliac Crest for Oral and Maxillofacial Reconstructive Surgery. Journal of Craniofacial Surgery, 26(8), E744-E746.
  • Ahlmann, E., Patzakis, M., Roidis, N., Shepherd, L., & Holtom, P. (2002). Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. Journal of Bone and Joint Surgery-American Volume, 84a(5), 716-720.
  • Bachtar, F., Chen, X., & Hisada, T. (2006). Finite element contact analysis of the hip joint. Medical & Biological Engineering & Computing, 44(8), 643-651.
  • Banwart, J. C., Asher, M. A., & Hassanein, R. S. (1995). Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976), 20(9), 1055-1060.
  • Bergmann, G., Bender, A., Dymke, J., Duda, G., & Damm, P. (2016). Standardized Loads Acting in Hip Implants. PLoS One, 11(5), e0155612.
  • Bohme, J., Lingslebe, U., Steinke, H., Werner, M., Slowik, V., Josten, C., & Hammer, N. (2014). The Extent of Ligament Injury and Its Influence on Pelvic Stability Following Type II Anteroposterior Compression Pelvic Injuries-A Computer Study to Gain Insight into Open Book Trauma. Journal of Orthopaedic Research, 32(7), 873-879.
  • Bohme, J., Shim, V., Hoch, A., Mutze, M., Muller, C., & Josten, C. (2012). Clinical implementation of finite element models in pelvic ring surgery for prediction of implant behavior: A case report. Clinical Biomechanics, 27(9), 872-878.
  • Burstein, F. D., Simms, C., Cohen, S. R., Work, F., & Paschal, M. (2000). Iliac crest bone graft harvesting techniques: a comparison. Plast Reconstr Surg, 105(1), 34-39.
  • Cai, L., Zhang, Y., Zheng, W., Wang, J., Guo, X., & Feng, Y. (2020). A novel percutaneous crossed screws fixation in treatment of Day type II crescent fracture-dislocation: A finite element analysis. J Orthop Translat, 20, 37-46.
  • Cansiz, E., Karabulut, D., Dogru, S. C., Akalan, N. E., Temelli, Y., & Arslan, Y. Z. (2019). Gait Analysis of Patients Subjected to the Atrophic Mandible Augmentation with Iliac Bone Graft. Applied Bionics and Biomechanics, 2019, 1-9.
  • Cardiff, P., Karac, A., FitzPatrick, D., Flavin, R., & Ivankovic, A. (2014). Development of mapped stress-field boundary conditions based on a Hill-type muscle model. International Journal for Numerical Methods in Biomedical Engineering, 30(9), 890-908.
  • Chan, K., Resnick, D., Pathria, M., & Jacobson, J. (2001). Pelvic instability after bone graft harvesting from posterior iliac crest: report of nine patients. Skeletal Radiology, 30(5), 278-281.
  • Coventry, M. B., & Tapper, E. M. (1972). Pelvic Instability: A CONSEQUENCE OF REMOVING ILIAC BONE FOR GRAFTING. JBJS, 54(1), 83-101.
  • Dosoglu, M., Orakdogen, M., Tervruz, M., Gogusgeren, M. A., & Mutlu, F. (1998). Enterocutaneous fistula: A complication of posterior iliac bone graft harvesting not previously described. Acta Neurochirurgica, 140(10), 1089-1092.
  • Egea, A. J. S., Valera, M., Quiroga, J. M. P., Proubasta, I., Noailly, J., & Lacroix, D. (2014). Impact of hip anatomical variations on the cartilage stress: A finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects. Clinical Biomechanics, 29(4), 444-450.
  • Enns-Bray, W. S., Ariza, O., Gilchrist, S., Widmer Soyka, R. P., Vogt, P. J., Palsson, H., Boyd, S. K., Guy, P., Cripton, P. A., Ferguson, S. J., & Helgason, B. (2016). Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Medical Engineering & Physics, 38(11), 1339-1347.
  • Escalas, F., & Dewald, R. L. (1977). Combined Traumatic Arteriovenous-Fistula and Ureteral Injury - Complication of Iliac Bone-Grafting - Case-Report. Journal of Bone and Joint Surgery-American Volume, 59(2), 270-271.
  • Filardi, V. (2015). The healing stages of an intramedullary implanted tibia: A stress strain comparative analysis of the calcification process. Journal of Orthopaedics, 12, S51-S61.
  • Guo, L. X., & Li, W. J. (2020). Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Comput Methods Biomech Biomed Engin, 23(2), 69-80.
  • Henyš, P., & Čapek, L. (2019). Computational modal analysis of a composite pelvic bone: convergence and validation studies. Computer Methods in Biomechanics and Biomedical Engineering, 22(9), 916-924.
  • Hill, N. M., Horne, J. G., & Devane, P. A. (1999). Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg, 69(10), 726-728.
  • Hsu, J. T., Chang, C. H., Huang, H. L., Zobitz, M. E., Chen, W. P., Lai, K. A., & An, K. N. (2007). The number of screws, bone quality, coefficient affect acetabular cup and friction stability. Medical Engineering & Physics, 29(10), 1089-1095.
  • Hsu, J. T., Lai, K. A., Chen, Q. S., Zobitz, M. E., Huang, H. L., An, K. N., & Chang, C. H. (2006). The Relation between micromotion and Screw Fixation in Acetabular Cup. Computer Methods and Programs in Biomedicine, 84(1), 34-41.
  • Hu, P., Wu, T., Wang, H. Z., Qi, X. Z., Yao, J., Cheng, X. D., Chen, W., & Zhang, Y. Z. (2017). Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission. Orthopaedic Surgery, 9(1), 115-122.
  • Kawahara, N., Murakami, H., Yoshida, A., Sakamoto, J., Oda, J., & Tomita, K. (2003). Reconstruction after total sacrectomy using a new instrumentation technique - A biomechanical comparison. Spine, 28(14), 1567-1572.
  • Kessler, P., Thorwarth, M., Bloch-Birkholz, A., Nkenke, E., & Neukam, F. W. (2005). Harvesting of bone from the iliac crest - comparison of the anterior and posterior sites. British Journal of Oral & Maxillofacial Surgery, 43(1), 51-56.
  • Kharmanda, G., Gowid, S., Mahdi, E., & Shokry, A. (2020). Efficient System Reliability-Based Design Optimization Study for Replaced Hip Prosthesis Using New Optimized Anisotropic Bone Formulations. Materials (Basel), 13(2).
  • Kilinc, A., Korkmaz, İ. H., Kaymaz, I., Kilinc, Z., Dayi, E., & Kantarci, A. (2017). Comprehensive analysis of the volume of bone for grafting that can be harvested from iliac crest donor sites. British Journal of Oral and Maxillofacial Surgery, 55.
  • Kono, T., Saiga, A., Tamagawa, K., Katsuki, K., Nomura, M., Hokazono, T., & Uchida, Y. (2018). Eruption of a venous malformation through an iliac bone harvesting site after trauma. Archives of plastic surgery, 45(6), 588-592.
  • Kurz, L. T., Garfin, S. R., & Booth, R. E. (1989). Harvesting Autogenous Iliac Bone-Grafts - a Review of Complications and Techniques. Spine, 14(12), 1324-1331.
  • Latypova, A., Pioletti, D. P., & Terrier, A. (2017). Importance of trabecular anisotropy in finite element predictions of patellar strain after Total Knee Arthroplasty. Medical Engineering & Physics, 39, 102-105.
  • Laurie, S. W., Kaban, L. B., Mulliken, J. B., & Murray, J. E. (1984). Donor-site morbidity after harvesting rib and iliac bone. Plast Reconstr Surg, 73(6), 933-938.
  • Lei, J. Y., Zhang, Y., Wu, G. Y., Wang, Z. H., & Cai, X. H. (2015). The Influence of Pelvic Ramus Fracture on the Stability of Fixed Pelvic Complex Fracture. Computational and Mathematical Methods in Medicine.
  • Li, Z., Kim, J. E., Davidson, J. S., Etheridge, B. S., Alonso, J. E., & Eberhardt, A. W. (2007). Biomechanical response of the pubic symphysis in lateral pelvic impacts: A finite element study. Journal of Biomechanics, 40(12), 2758-2766.
  • Linstrom, N. J., Heiserman, J. E., Kortman, K. E., Crawford, N. R., Baek, S., Anderson, R. L., Pitt, A. M., Karis, J. P., Ross, J. S., Lekovic, G. P., & Dean, B. L. (2009). Anatomical and Biomechanical Analyses of the Unique and Consistent Locations of Sacral Insufficiency Fractures. Spine, 34(4), 309-315.
  • Liu, L., Ecker, T., Xie, L., Schumann, S., Siebenrock, K., & Zheng, G. (2015). Biomechanical validation of computer assisted planning of periacetabular osteotomy: A preliminary study based on finite element analysis. Medical Engineering & Physics, 37(12), 1169-1173.
  • Mircheski, I., & Gradisar, M. (2016). 3D finite element analysis of porous Ti-based alloy prostheses. Comput Methods Biomech Biomed Engin, 19(14), 1531-1540.
  • Mo, F., Li, F., Behr, M., Xiao, Z., Zhang, G., & Du, X. (2017). A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles. Annals of biomedical engineering, 46.
  • Nie, Y., Pei, F. X., & Li, Z. M. (2014). Effect of High Hip Center on Stress for Dysplastic Hip. Orthopedics, 37(7), E637-E643.
  • Phillips, A. T., Pankaj, P., Howie, C. R., Usmani, A. S., & Simpson, A. H. (2006). 3D non-linear analysis of the acetabular construct following impaction grafting. Comput Methods Biomech Biomed Engin, 9(3), 125-133.
  • Phillips, A. T. M., Pankaj, P., Howie, C. R., Usmani, A. S., & Simpson, A. H. R. W. (2007). Finite element modelling of the pelvis: Inclusion of muscular and ligamentous boundary conditions. Medical Engineering & Physics, 29(7), 739-748.
  • Rudman, K. E., Aspden, R. M., & Meakin, J. R. (2006). Compression or tension? The stress distribution in the proximal femur. Biomedical Engineering Online, 5.
  • Salo, Z., Beek, M., Wright, D., & Whyne, C. M. (2015). Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: Generation of patient specific models of the human pelvis without segmentation. Journal of Biomechanics, 48(6), 1125-1132.
  • Sensoy, A. T., Kaymaz, I., Ertas, U., & Kiki, A. (2018). Determining the Patient-Specific Optimum Osteotomy Line for Severe Mandibular Retrognathia Patients. Journal of Craniofacial Surgery, 29(5), e449-e454.
  • Shi, D. F., Wang, F., Wang, D. M., Li, X. Q., & Wang, Q. G. (2014). 3-D finite element analysis of the influence of synovial condition in sacroiliac joint on the load transmission in human pelvic system. Medical Engineering & Physics, 36(6), 745-753.
  • Song, W., Zhou, D., & He, Y. (2016). The biomechanical advantages of bilateral lumbo-iliac fixation in unilateral comminuted sacral fractures without sacroiliac screw safe channel: A finite element analysis. Medicine (Baltimore), 95(40), e5026.
  • Steffen, T., Downer, P., Steiner, B., Hehli, M., & Aebi, M. (2000). Minimally invasive bone harvesting tools. European Spine Journal, 9, S114-S118.
  • Suda, A. J., Schamberger, C. T., & Viergutz, T. (2019). Donor site complications following anterior iliac crest bone graft for treatment of distal radius fractures. Arch Orthop Trauma Surg, 139(3), 423-428.
  • Şensoy, A. T., Çolak, M., Kaymaz, I., & Findik, F. (2019). Optimal Material Selection for Total Hip Implant: A Finite Element Case Study. Arabian Journal for Science and Engineering.
  • Şensoy, A. T., Kaymaz, I., & Ertaş, Ü. (2020). Development of particle swarm and topology optimization-based modeling for mandibular distractor plates. Swarm and Evolutionary Computation, 100645.
  • Wang, J.-P., Guo, D., Wang, S.-H., Yang, Y.-Q., & Li, G. (2019). Structural stability of a polyetheretherketone femoral component—A 3D finite element simulation. Clinical Biomechanics, 70, 153-157.
  • Zhang, J., Wei, Y., Gong, Y., Dong, Y., & Zhang, Z. (2018). Reconstruction of iliac crest defect after autogenous harvest with bone cement and screws reduces donor site pain. BMC Musculoskeletal Disorders, 19(1).
  • Zhang, Q. H., Wang, J. Y., Lupton, C., Heaton-Adegbile, P., Guo, Z. X., Liu, Q., & Tong, J. (2010). A subject-specific pelvic bone model and its application to cemented acetabular replacements. Journal of Biomechanics, 43(14), 2722-2727.
  • Zhang, Y.-W., Xiao, X., Gao, W.-C., Xiao, Y., Zhang, S.-L., Ni, W.-Y., & Deng, L. (2019). Efficacy evaluation of three-dimensional printing assisted osteotomy guide plate in accurate osteotomy of adolescent cubitus varus deformity. Journal of Orthopaedic Surgery and Research, 14(1).