3,5-DİBROMO-2-HİDROKSİBENZOİK ASİT MOLEKÜLÜNÜN KONFORMASYON ANALİZİ VE ELEKTRONİK ÖZELLİKLERİNİN İNCELENMESİ

STUDY OF THE CONFORMATION ANALYSIS AND ELECTRONIC PROPERTIES OF 3, 5-DIBROMO-2-HYDROXYBENZOIC ACID MOLECULE

Bu çalışmada, 3,5-dibromo-2-hidroksibenzoik asit molekülünün yapısal parametreleri, titreşim frekansları, dipol moment (μ), polarizebilite (α), hiperpolarizebilite (β), en yüksek dolu molekül orbital (HOMO), en düşük boş molekül orbital (LUMO) değerleri Hartree Fock (HF) ve Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) metotlarında 6-311++g(d,p) temel seti kullanılarak incelendi. Ayrıca, molekülün potansiyel enerji yüzeyi C2-C1-O3-H ve C6-C7-O1-H dihedral açılarının fonksiyonu olarak DFT/B3LYP metotta 6-31G temel seti kullanılarak yapıldı. Potansiyel enerji yüzeyi hesaplamaları sonucunda, molekülün iki kararlı durum konformerleri (C-I ve C-II) bulundu ve bu konformerler Hartree Fock HF/6-311++G (d,p) ve B3LYP/6-311++G(d,p) teori düzeyinde optimize edildi. Moleküllerin EHOMO ve ELUMO enerji değerleri kullanılarak, enerji aralığı (∆E = ELUMO - EHOMO) hesaplandı. Çalışılan molekülün titreşim modlarının işaretlenmesi için toplam enerji dağılımı (TED) VEDA4f programı kullanılarak hesaplandı. Molekülün C-I ve C-II konformerlerinin Enerji aralığı değerleri sırasıyla, B3LYP / 6-311 ++ G (d, p) metotu ile 4.31, 4.36 ve HF / 6-311 ++ G (d,p) metotu ile 10.05, 10.17 eV olarak hesaplandı. Her iki metotta hesaplanan 3,5-dibromo-2-hidroksibenzoik asit molekülünün yapısal parametreleri, literatürdeki verilerle karşılaştırıldı ve yapısal parametreler arasında iyi bir uyum olduğu görüldü.

___

  • Bazyl, O.K., Artyukhov, V.Y., Maier, G.V., Tolstorozhev, G.B., Raichenok, T.F., Skornyakov, I.V., Shadyro, O.I., Sorokin, V.L., Ksendzova, G.A. (2012) Electronic Structure and Spectroscopic Properties of AntiHIV Active Aminophenols. Optika Spektroskopiya, 112, 248–257.
  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098–310.
  • Becke A.D. (1993). Density-functional thermochemistry 3. the role of exact exchange. The Journal of Chemical Physics, 98 (7): 5648-5652.
  • Cao Y.G., Zhang L., Ma C., Chang B.B., Chen Y.C., Tang Y.Q., Liu X.D., Liu X.Q.5 (2009)‘’Metabolism of protocatechuic acid influences fatty acid oxidation in rat heart: new anti-angina mechanism implication’’. Biochem Pharmacol, 77(6), 1096-104.
  • Dennington R, Keith T, Millam J, 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KS.
  • Cramer, C.J., (2004) Essential of computational chemistry, John Wiley and Sons, London, 596s.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J, 2010. Gaussian Inc., (Wallingford, CT).
  • Jomroz, M.H.,(2004) ‘’Vibrational Energy distribution Analysis VEDA4 (Warsaw).
  • Krimmer, B., Swoboda, F., Solar, S., Reznicek, G. (2010). ‘’OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study’’ Radiat. Phys. Chem., 79, 1247–1254.
  • Lee CT, Yang WT, Parr RG, 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785-789.
  • Levine,I.N., (2000) Many-Electron Atoms.Quantum New Jersey,739s.
  • Liu, C.B., Chen, D.D.,Wen,H.L. (2008) ‘’3,5-Dibromo-2-hydroxybenzoic acid’’Acta Crystallographica Section E E64, 03.
  • Olmo, A. D., Calzada, J., and l Nunez, M. (2017) ‘’Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives’’ Crıtıcal Revıews in Food Scıence and Nutrıtıon 57, 3084–3103.
  • SCCNFP (Scientific Committee on Cosmetic Products and Non-food Products. Cosmetic Ingredients). (2011). Amended Final Safety Assessment: Benzyl Alcohol, and Benzoic Acid and Its Salts and Benzyl Ester. European Commission, Brussels, pp. 1–38.
  • Sircar, D., Roychwdhyry, A., Mitra, A. (2007) ‘’Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota’’ J. Plant Physiol., 164, 1358–1366.
  • Sundaraganesana, N., Ilakiamania, S., Saleema, H., Wojciechowskib, P. M., Michalskab, D. 2005. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochimica Acta Part A, 61, 2995-3001.
  • Tanaka T, Tanaka T, Tanaka M (2011) Potential Cancer Chemopreventive Activity of Protocatechuic Acid. J Exp Clin Med 3: 27–33.
  • Tolstorozhev, G. B., Skornyakov, I. V., Belkov, M. V., Shadyro, O. I., Polozov, G. I., Sorokin, V. L., Ksendzova, G. A. (2012), ‘’Spectroscopic Properties of Pharmacologically Active Phenols’’ Optics and Spectroscopy, Vol. 112, 720–727.
  • Tolstorozhev, G. B., Belkov, M. V., Skornyakov, I. V., Polozov, G. I., Sorokin, V. L., Ksendzova, G. A., Shadyro, O. I. (2011). ‘’IR Fourier-Spectroscopy and Pharmacological Properties of Phenols’’ Nonlinear Phenom. Complex Syst. 14 (3), 282-289.