2,3,4-Trihidroksibenzoik Asit Molekülünün Konformasyon, Titreşim, Geometrik ve Eletronik Özeliklerinin Kuantum Kimyasal Hesaplanması

2,3,4-Trihidroksibenzoik asit molekülünün temel hal geometrisini elde etmek için, molekülün potansiyel enerji yüzeyi C2-C1-C7-O5 ve C3-C2-O1-H iki dihedral açının fonksiyonu olarak, yoğunluk fonksiyoneli teorisi DFT/B3LYP yöntemi ile 6-31G baz seti kullanılarak elde edildi. Potansiyel enerji yüzeyi üzerindeki en düşük enerjili konformasyonların geometri optimizasyon hesaplamaları yapılarak, molekülün temel hal geometrisi saptandı. Bu yapı kullanılarak, molekülün geometrisi, en yüksek dolu moleküler orbital (HOMO), en düşük boş moleküler orbitallerin (LUMO) enerjileri, harmonik titreşim dalga sayıları, lineer optik özellikler (polarizebilite) ve lineer olmayan optik özellikleri (NLO) (hiperpolarizebilite) Gaussian 09W programı kullanılarak incelendi. Çalışılan molekülün yapısal ve elektronik özellikleri, ab initio Hartree Fock (HF) metodu ve yoğunluk fonksiyoneli DFT/B3LYP metodu 6-311++G(d,p) taban kümesi kullanılarak incelendi Molekülün EHOMO ve ELUMO enerji değerleri kullanılarak, enerji aralığı (∆E = ELUMO -EHOMO) ve elektronik (elektronegativite, kimyasal yumuşaklık ve sertlik özellikleri) belirlendi. 2,3,4-Trihidroksibenzoik asit molekülünün titreşim modlarının işaretlenmesi toplam enerji dağılımı (TED) VEDA4f programında hesaplandı. Molekülün denge durumu (taban hali) enerji aralığı değerleri sırasıyla, B3LYP/6-311++ G(d,p) metodu ile 4.72 ve HF/6-311++G(d,p) metodu ile 9.95 eV olarak hesaplandı. Her iki metotta hesaplanan 2,3,4-Trihidroksibenzoik asit molekülünün yapısal parametreleri, molekülle ilgili daha önce yapılmış deneysel çalışma verileri ile karşılaştırıldı ve yapısal parametreler arasında iyi bir uyum olduğu görüldü.

Quantum Chemical Calculation of Conformation, Vibration, Geometric and Electronic Properties of 2,3,4-Trihydroxybenzoic Acid Molecule

To obtain the groud state geometry of the 2,3,4-Trihydroxybenzoic acid molecule, potential energy surface of the molecule as a function of the two main dihedral angles, C2-C1-C7-O5 and C3-C2-O1-H, was obtained by using the density functional theory DFT/B3LYP method with 6-31G.basis set. The geometry optimization calculations of the lowest energy conformations on the potential energy surface were made and the ground state geometry of the molecule was determined. Using this structure, the geometry of the molecule, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbitals (LUMO), harmonic vibration waves, linear optical properties (polarizability) and nonlinear optical properties (NLO) (hyperpolarizability) values has been examined using Gaussian 09W program. Structural and electronic properties of the studied molecule were examined using ab initio Hartree Fock (HF) method and density functional DFT/B3LYP method using 6-311++G (d,p) the base set.The energy range (∆E = ELUMO-EHOMO) and electronics (electronegativity, chemical softness and hardness properties) of the molecule were determined using EHOMO and ELUMO energy values of the molecule. The total energy distribution (TED) of the 2,3,4-trihydroxybenzoic acid molecule was calculated in VEDA4f program. The energy gap values of ground state geometry of the molecule were calculated as 4.72 with B3LYP/6-311++G(d, p) and 9.95 eV at HF/6-311++G(d,p) methods, respectively. The structural parameters of the 2,3,4-trihydroxybenzoic acid molecule calculated in both methods were compared with the previous experimental data on the molecule and a good agreement was found between the structural parameters.

___

  • KAYNAKLARBecke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098–310.Becke A.D. (1993). Density-functional thermochemistry 3. the role of exact exchange. The Journal of Chemical Physics, 98 (7): 5648-5652..Cramer C.J., (2004) Essential of computational chemistry, John Wiley and Sons, London, 596s. Cuvelier M.-E., Richard H., Berset C. (1992). Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci. Biotechnol. Biochem., 56, 324–325 Dennington R, Keith T, Millam J, 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KSFrisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J, 2010. Gaussian Inc., (Wallingford, CT).Jomroz M.H.,(2004) ‘’Vibrational Energy distribution Analysis VEDA4 (Warsaw).Kawabata J., Okamoto Y., Kodama A., Makimoto, T., Kasai,T. (2002). Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J. Agric. Food Chem., 50, 5468–5471 Kimura T., Yamamoto S., Ogawa I., Miura, H., Hasegawa, M. (1999). Antioxidant ability of chicoric acid and its analogous compounds. Nippon Kagaku Kaishi, 739– 750 Kiss T, Micera G, Sanna D, Kozlowski H (1994). Copper(II) and oxovanadium(IV) complexes of 2,3-dihydroxyterephthalic and 2,3,4-trihydroxybenzoic acids. J Chem Soc Dalton Trans. 3:347–353 Kodama A., Shıbano H., Kawabatay J. (2007) . Oxidative Dimer Produced from a 2,3,4-Trihydroxybenzoic Ester. Biosci. Biotechnol. Biochem., 71 (7), 1731–1734.Lee CT, Yang WT, Parr RG, 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785-789.Levine,I.N., (2000) Many-Electron Atoms.Quantum New Jersey,739s.Li J.H., Dong F.Y., F C.,, Yuan X.F., Jiang R. W. (2012). 2,3,4-Trihydroxybenzoic acid 0.25 hydrate. Acta Cryst. E68, o825–o82
  • Natella F., Nardini, M., Di Felice M., and Saccini C. (1999).Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agric. Food Chem., 47, 1453–1459 Pearson R. G. (1986). Proceeding of the National Academiy of Sciences; 83, 8440-8441Politzer P., Murray J.S., Concha M.C. (2002). The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. International Journal of Quantum Chemistry, 88(1) 19-27.Prior T. J.,Sharp A. J. (2010). The Structure of the Antioxidant 2,3,4-Trihydroxybenzoic Acid Dihydrate J Chem Crystallogr 40:630–633Rice-Evans C. A., Miller N. J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933–956Shete H.G., Chitanand M.P. (2015). Bioconversion of Naturally Occurring Tannins into a Value Added Pharmaceutical Intermediate Gallic Acid a New Approach. Int.J.Curr.Microbiol.App.Sci, 4(11): 597-604 Sundaraganesana, N., Ilakiamania, S., Saleema, H., Wojciechowskib, P. M., Michalskab, D. 2005. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochimica Acta Part A, 61, 2995-3001
Caucasian Journal of Science-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: Kafkas Üniversitesi
Sayıdaki Diğer Makaleler

Cu(II) p-Floro-, p-Kloro- ve p-Bromobenzoatların N,N'-Dietilnikotinamid Komplekslerinin Sentezi, Spektroskopik ve Termik Özellikleri

Füreya Elif ÖZBEK

Spectroscopic Aspects (Experimental/Theoretical (FT-IR, NMR)) and Electronic Properties of 3-p-Chlorobenzyl-4-[3-(3-methoxybenzoxy)- benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one

Hilal MEDETALİBEYOĞLU, Haydar YÜKSEK

THE INVESTIGATION OF IN VITRO CALLUS FORMATION, REGENERATION AND MICROPROPAGATION OF DEVEGULU HOLLYHOCK, A MEDICINAL PLANT

Gül GÖRMEZ, Abdulhamit BATTAL, Musa TÜRKER

DOĞU ANADOLU'DA KULLANILAN BAZI GÜBRELERİN DOĞAL RADYOAKTİVİTE KONSANTRASYONLARININ BELİRLENMESİ

Gülçin BİLGİCİ CENGİZ (EKER), İlyas ÇAĞLAR

MODELING AND OPTIMAL TRAJECTORY TRACKING CONTROL OF WHEELED A MOBILE ROBOT

Tayfun ABUT, Mesut HUSEYİNOĞLU

2,3,4-Trihidroksibenzoik Asit Molekülünün Konformasyon, Titreşim, Geometrik ve Eletronik Özeliklerinin Kuantum Kimyasal Hesaplanması

Güventürk UĞURLU

ANNELERİN DOĞUM SONU DÖNEMDE ALDIKLARI EBELİK/HEMŞİRELİK BAKIMINDAN MEMNUNİYET DÜZEYLERİNİN DEĞERLENDİRİLMESİ

Özlem KARABULUTLU, Canan YAVUZ

Co(II), Cu(II) ve Ni(II) 4-karboksibenzaldehit’in Pirazin Komplekslerinin Sentezi, Spektroskopik ve Antibakteriyel Özellikleri

Mustafa SERTÇELİK, Füreya Elif ÖZBEK, Fatih ÇELİK

3-(n-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5- on Molekülünün Deneysel (FT-IR, NMR) ve Teorik (DFT/HF) Çalışması

Gül KOTAN, Haydar YÜKSEK

The Investigation of Molecular and Spectroscopic Properties of 3-Ethyl-4-(4- cinnamoyloxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one Compound Using B3LYP and HF Basis Sets

Murat BEYTUR, Haydar YÜKSEK