Theoretical Investigations on Thermo-Dynamic Properties and Molecular Structure of the Phosphorus-Containing Derivative of Chromone

3-(1-Amino-etilidin)-2metoksi-2-okzo-2,3 -dihidro-2λ 5 -benzo[e][1,2]okzafosfonin-4- on olası tautomerik formları Hartree-Fock (HF) ve Yo˘gunluk Fonksiyonel teorisi (DFT) metodları kullanılarak ara¸stırıldı. Hesaplanan ba˘g uzunlukları ve ba˘g a¸cıları deneysel verilerle kıyaslandı. Tautomerlerin yapıları, enerjileri ve relatif kararlıkları kar¸sıla¸stırıldı ve analiz edildi. Amin-keto ve imin-enol tautomerizmi, iki form arasındaki reaktivite farkını oranlamak i¸cin dikkate alındı. Keto formunun enol formundan daha kararlı oldu˘gu g¨ozlendi. Asitlik sabiti ve fizikokimyasal parametreler yarı-deneysel metodlarla hesaplandı.

Theoretical Investigations on Thermo-Dynamic Properties and Molecular Structure of the Phosphorus-Containing Derivative of Chromone

The possible tautomeric forms of 3-(1-amino-ethylidene)-2methoxy-2-oxo-2,3- dihydro-2λ^5 -benzo[e][1,2]oxaphosphinin-4-one molecule were searched by utilizing HartreeFock (HF) and Density Functional Theory (DFT) methods. The computed bond lengths and bond angles were compared with the experimental data. The structure, energies and relative stability of tautomers were compared and analyzed. The amine-keto and iminoenol tautomerism was taken into account to rationalize the difference in reactivity between the two forms. The keto form was found to be more stable than the enol form. The acidity constant and physicochemical parameters were computed by semi-empirical methods.

___

  • [1] A. M. Magill and B. F. Yates, An assessment of theoretical protocols for calculation of the pKa values of the prototype imidazolium cation, Aust. J. Chem. 57 (2004), 1205–1210.
  • [2] K. J. Cavell, A. M. Magill, and B. F. Yates, Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions, J. Am. Chem. Soc. 126 (2004), 8717–8274.
  • [3] Y. Fu, L. Liu, H.-Z. Yu, Y. Wang, and Q.-X. Guo, Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile, J. Am. Chem. Soc. 127 (2005), 7227–7234.
  • [4] A. M. Toth, M. D. Liptak, D. L. Philips, and G. C. Shields, Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods, J. Chem. Phys. 114 (2001), 4595–4606.
  • [5] C. O. Silva, E. C. da Silva, and M. A. C. Nascimento, Ab initio calculations of absolute pKa values in aqueous solution II. Aliphatic alcohols, thiols, and halogenated carboxylic acids, J. Phys. Chem. A 104 (2000), 2402–2409.
  • [6] E. Budzisz, Synthesis, reactions and biological activity of phosphorus-containing derivatives of chromone and coumarin, Phosphor Sulfur Silicon 179 (2004), 2131–2147.
  • [7] E. Budzisz, W la´sciwo´sci biologiczne fosfonianowych pochodnych chromonu i kumaryny, Farmacja Polska 59 (2003), 677–683.
  • [8] E. Budzisz, J. Graczyk-Wojciechowska, R. Zieba, and B. Nawrot, A new series of 2-substituted 3-phosphonic derivatives of chromone. Part II. Synthesis, in vitro alkylating and in vivo antitumor activity, New J. Chem 26 (2002), 1799–1804.
  • [9] R. Deng, J. Wu, and L. Long, Lanthanide complexes of bis(4-hydroxy-3-coumarinyl) acetic acid and their anticoagulant action, Bul. Soc. Chim. Belg. 101 (1992), 439–443.
  • [10] I. Kostova, I. Manolov, S. Konstantinov, and M. Karaivanova, Synthesis, physicochemical characterisation and cytotoxic screening of new complexes of cerium, lanthanum and neodymium with warfarin and coumachlor sodium salts, Eur. J. Med. Chem. 34 (1999), 63–68.
  • [11] I. Manolov, I. Kostova, T. Netzeva, S. Konstantinov, and M. Karaivanova, Cytotoxic activity of cerium complexes with coumarin derivatives. Molecular modeling of the ligands, Arch. Pharm. Pharm. Med. Chem. 333 (2000), 93–98.
  • [12] I. Kostova, I. Manolov, and M. Karaivanova, Synthesis, physicochemical characterization, and cytotoxic screening of new zirconium complexes with coumarin derivatives, Archiv. Pharm. Pharm. Med. Chem. 334 (2001), 157–162.
  • [13] V. D. Karaivanova, I. Manolov, M. L. Minassyan, N. D. Danchev, and S. M. Samurova, Metal complexes of warfarin sodium, Pharmazie. 49 (1994), 856–857.
  • [14] E. Budzisz, B. K. Keppler, G. Giester, M. Wozniczka, A. Kufelnicki, and B. Nawrot, Synthesis, crystal structure and cytotoxicity of novel palladium (II) complex with coumarin derived ligand, Eur. J. Inorg. Chem. 2004 (2004), 4412–4419.
  • [15] E. Budzisz, U. Krajewska, and M. Rozalska, Cytotoxic and proapoptotic effects of new Pd(II) and Pt(II)-complexes with 3-ethanimidoyl-2-methoxy-2H-1,2-benzoxaphosphinin-4-ol-2-oxide, Pol. J. Pharmacol. 56 (2004), 473–478.
  • [16] E. Budzisz and S. Pastuszko, Reaction of dimethyl 2-methyl- and dimethyl 2 phenyl-4-oxo4H-chromen-3-yl-phosphonate with amines, Tetrahedron 55 (1999), 4815–4824.
  • [17] H. Kolancılar, C. Karapire, U. Oyman, and S. ¨ ˙I¸cli, Fluorescence emission and photooxidation studies with 5,6- and 6,7-benzocoumarins and a 5,6-benzochromone under direct and concentrated sun light, J. Photochem. Photobiol A: Chem. 153 (2002), 173–184.
  • [18] E. Budzisz, M. Malecka, M. Wozniczka, and A. Kufelnicki, Crystal Structure, protolytic properties and alkylating activity of 5-λ3-(1-amino-ethylidene)-2-methoxy-2-oxo-2,3-dihydro-2 benzo[e][1,2]oxaphosphinin-4-one, J. Mol. Struct. 753 (2005), 113–118.
  • [19] C. O˘gretir, C. Yenikaya, and H. Berber, A quantum chemical study on structure of 1,2- bis(diphenylphosphinoyl)ethane and phenol cocrystal, J. Mol. Struct.: THEOCHEM 686 (2004), 153–157.
  • [20] C. O˘gretir, C. Yenikaya, and H. Berber, A quantum chemical study on structure of 1,2- Bis(diphenylphosphinoyl)ethane and hydroquinone cocrystal, J. Mol. Struct.: THEOCHEM 725 (2005), 207–214.
  • [21] CAChe WorkSystem Pro, Version 6.1.12, FCS Inc., 15244 NW Greenbrier Parkway, Beaverton, Oregon, 2004.
  • [22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003.
  • [23] J. B. Foreseman and Æ. Frisch, Exploring chemistry with electronic structure methods, 2. ed., Gaussian Inc., Pitssburgh 1996.
  • [24] I. Georgieva, T. Mihaylov, G. Bauer, and N. Trendafilova, Effect of the nature of mendiaxon − − X+ interactions (X+ = Na+, Cu+, H+) and the hydrogen bonding on the v(C = O) behavior: theoretical and spectroscopic study, Chemical Physics 300 (2004), 119–131.
  • [25] D. D. Perrin, Dissociation constants of organic bases in aqueous solution, first supplement, Pergamon, Oxford, 1972.