The Bilinear Hardy-Littlewood Maximal Function and Littlewood-Paley Square Function on Weighted Variable Exponent Wiener Amalgam Space

The Bilinear Hardy-Littlewood Maximal Function and Littlewood-Paley Square Function on Weighted Variable Exponent Wiener Amalgam Space

The space “weighted variable exponent Wiener amalgam”  whose local component is “variable exponent Lorentz space” is considered. Then boundedness of the “bilinear Hardy-Littlewood maximal function” and “Littlewood-Paley square function” is discussed on this space.

___

  • I. Assani, Z. Buczolih, The (L¹,L¹) bilinear Hardy-Littlewood function and Furstenberg averages, Rev. Mat. Iberoamericana, 26(3), (2010), 861-890.
  • I. Aydın, A. T. Gürkanlı, Weighted variable exponent amalgam spaces , Glasnik Matematicki, 47(67), (2012), 165-174.
  • F. Bernicot, estimates for non smoth bilinear Littlewood-Paley square functions on R, arXiv:0811.2854, to appear in Math. Ann., (2018).
  • T. Dobler, Wiener Amalgam Spaces on Locally Compact Groups, Master's thesis, University of Vienna, (1989).
  • L. Ephremidze, V. Kokilashvili, S. Samko, Fractional, maximal and singular operators in variable exponent Lorentz spaces, Fract. Calc. Appl. Anal., 11(4), (2008), 1-14.
  • H. G. Feichtinger, Banach convolution algebras of Wiener's type, Proc. Conf. Functions, Series, Operators, Budapest, 1980, Colloquia Math. Soc. J. Bolyai, North Holland Publ. Co., Amsterdam- Oxford- New York, (1983), 509-524.
  • H. G. Feichtinger, K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86, (1989), 307-340.
  • H. G. Feichtinger, A. T. Gürkanlı, On a family of weighted convolution algebras, Int. J. Math. Math. Sci. 13, (1990), 517-526.
  • R. H. Fischer, A. T. Gürkanlı, T. S. Liu, On a family of Wiener type spaces, Internat. J. Math. Math. Sci. 19, (1996), 57-66.
  • J. J. Fournier, J. Stewart, Amalgams of and , Bull. Amer. Math. Soc. (N. S.) 13, (1985), 1-21.
  • A. T. Gürkanlı, I. Aydın, On the weighted variable exponent amalgam space , Acta Mathematica Scientia, 34B(4), (2014), 1098-1110.
  • A. T. Gürkanlı, "The Amalgam spaces and boundedness of Hardy-Littlewood Maximal operators", Current Trends in Analysis and Its Applications, Springer International Publishing Switzerland, (2015).
  • C. Heil, "An introduction to weighted Wiener Amalgams", In: Wavelets and their Applications (Chennai, 2002), Allied Publishers, New Delhi, 183-216,(2003).
  • F. Holland, Square -summable positive-definite functions on real line, Linear operators Approx. II, Ser. Numer. Math. 25, Birkhauser, Basel, (1974), 247-257.
  • F. Holland, Harmonic analysis on amalgams of and , London math. Soc. 10(2), (1975), 295-305.
  • R. A. Hunt, On L(p,q) spaces, Extrait de L'Enseignement Mathematique T., XII, fasc.,4, (1966), 249-276.
  • O. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turk J Math, 40, , (2016), 605-619.
  • O. Kulak, Boundedness of bilinear Littlewood-Paley Square function on variable Lorentz spaces, AIP,(2017), 1863, 1.
  • M. Lacey, On bilinear Littlewood-Paley square functions, Publ. Mat. 40(2), (1996), 387-396.
  • M. T. Lacey, The bilinear maximal fuctions map into for (2/3)
  • P. Mohanty, S. Shrivastava, A note on the bilinear Littlewood-Paley square function, Proceedings of the American Mathematical Society, 6(138), (2010), 2095-2098.
  • J. L. Rubio de Francia, Estimates for some square functions of Littlewood-Paley type, Publ. Sec. Mat. Univ. Autonoma Barcelona, 27(2), (1983), 81-108.
  • J. L. Rubio de Francia, A Littlewood-Paley inequalty for arbitrary intervals, Rev. Mat. Iberoamericana, 1(2), (1985), 1-14.
  • L. Schwartz, Mathematics for the Pyhsical Science, Addison-Wesley Publishing Company, (1966).
  • N. Wiener, Tauberian theorems, Ann.Math, 33, (1932), 1-100.