Moleküler Dinamik Benzetim Yönteminde Atom Sayısının Kristalleşme Süreci Üzerine Etkisi

Moleküler Dinamik Benzetim Yönteminde Atom Sayısının Kristalleşme Süreci Üzerine Etkisi

This study has modelled CuAINi ternary alloy system through the use of the Parinello-Rahman molecular dynamic simulation method and examined the structural characteristics of this model during transition from amorphous phase to the crystal one. Furthermore, the effect of the quantity of atoms constituting MD cells on the crystallization time of this process has been investigated. Then, the number of 1421 bonded pairs has been analyzed by the Honeycut-Andersen method.

___

  • [1] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Ltd., Oxford 2004.
  • [2] W. F. Smith, Malzeme Bilimi ve Muhendisligi, Literatur Yayıncılık, Istanbul 2001.
  • [3] Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu and D. Juul Jensen, Analysis of the growth of individual grains during recrystallization in pure nickel, Acta Materialia 57 (2009), 2631–2639.
  • [4] L. Liu, Z. F. Wu and J. Zhang, Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy, Journal of Alloys and Compounds 339 (2002), 90–95.
  • [5] D. M. Herlach (ed.), Solidification and Crystallization, Wiley-VCH, Weinheim 2004.
  • [6] S. Kazanc, Bakır Bazlı Alasımlarda Termoelastik Donusumlerin Molekuler Dinamik Benzetim, Doktora Tezi, Fırat Universitesi, Elazıg 2004.
  • [7] D. W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin 1986.
  • [8] S. Ozgen, Sayısal Hesaplama Yontemlerinin Sekil Hatırlamalı Alasımlarda Difuzyonsuz Faz Donusumlerine Uygulanması, Doktora Tezi, Fırat Universitesi, Elazıg 1997.
  • [9] M. Parrinello and A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters 45 (1980), 1196–1199.
  • [10] H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, Journal of Chemical Physics 72 (1980), 2384–2393.
  • [11] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley and Sons Inc., Canada 1992.
  • [12] J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, The Journal of Physical Chemistry 91 (1987), 4950–4963.
  • [13] Y. Qi, T. Cagın, Y. Kimura and W. A. Goddard, Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Physical Review B 59 (1999), 3527–3533.
  • [14] C. A. Schuh, T. C. Hufnagel and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia 55 (2007), 4067–4109.
  • [15] L. Z. Zhou, J. T. Guo, G. S. Li, L. Y. Xiong, S. H. Wang and C. G. Li, Investigation of annealing behavior of nanocrystalline NiAl, Materials and Design 18 (1997), 373–377.
  • [16] Q. X. Pei, C. Lu and H. P. Lee, Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study, Journal of Physics: Condensed Matter 17 (2005), 1493–1504.
  • [17] C. Desgranges and J. Delhommelle, Molecular simulation of cross-nucleation between polymorphs, The Journal of Physical Chemistry B 111 (2007), 1465–1469.
  • [18] P. Richard, L. Oger, J. P. Troadec and A. Gervois, Geometrical characterization of hard-sphere systems, Physical Review E 60 (1999), 4551-4558.