Analysis of the Specific Heat and Calculation of the Entropy, Enthalpy, and Free Energy Close to the Lower Phase Transition in Imidazolium Perchlorate

Analysis of the Specific Heat and Calculation of the Entropy, Enthalpy, and Free Energy Close to the Lower Phase Transition in Imidazolium Perchlorate

The abnormal behavior of the specific heat of Imidazolium Perchlorate (Im-ClO4) was analyzed in terms of the power-law formula (including critical exponent α and fitting parameter JA) derived from the Ising model around the lower phase transition temperature of TC = 247 K. Moreover, the temperature dependence of some thermodynamic functions such as entropy, enthalpy, and the Gibbs free energy were calculated using the values of α and ?? extracted from the observed specific heat data of Im-ClO4.

___

  • [1] E. B. Anderson, and T. E. Long, “Imidazole- and imidazolium-containing polymers for biology and material science applications,” Polymer, vol. 51, no. 12, pp. 2447–2454, 2010.
  • [2] C. G. Hanke, S. L. Price, and R. M. Lynden-Bell. “Intermolecular potentials for simulations of liquid imidazolium salts,” Molecular Physics, vol. 99, no.10, pp. 801–809, 2001.
  • [3] Y. Zhang, and J. Y. G. Chan, “Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation,” Energy & Environmental Science, vol. 3, no. 4, pp. 408–417, 2010.
  • [4] L. Zhao, C. Zhang, L. Zhuo, Y. Zhang, and J. Y. Ying. “Imidazolium Salts: A Mild Reducing and Antioxidative reagent,” Journal of the American Chemical Society, vol. 130, no. 38, pp. 12586–12587, 2008.
  • [5] H. Ma, W. Gao, J. Wang, T. Wu, G. Yuan, J. Liu, and Z. Liu, “Ferroelectric polarization switching dynamics and domain growth of Triglycine Sulfate and Imidazolium Perchlorate,” Advanced Electronic Materials, vol. 2, p. 1600038, 2016.
  • [6] W. Gao, L. Chang, H. Ma, L. You, J. Yin, J. Liu, Z. Liu, J. Wang, and G. Yuan, “Flexible organic ferroelectric films with a large piezoelectric response,” NPG Asia Materials, vol. 7, no. 6, p 189, 2015.
  • [7] Y. Zhang, Y. Liu, H. Y. Ye, D. W. Fu, W. Gao, H. Ma, Z. Liu, Y. Liu, W. Zhang, J. Li, G. L. Yuan, and R. G. Xiong, “A molecular ferroelectric thin film of imidazolium perchlorate that shows superior electromechanical coupling,” Angewandte Chemie International Edition, vol. 126, pp. 5164-5168, 2014.
  • [8] Y. Hu, Z. Guo, A. Ragonese, T. Zhu, S. Khuje, C. Li, J. C. Grossman, C. Zhou, M. Nouh, and S. A. Ren, “3Dprinted molecular ferroelectric metamaterial,” Proceedings of the National Academy of Sciences, vol. 117, no. 44, pp. 27204-27210, 2020.
  • [9] Z. Pająk, P. Czarnecki, B. Szafrańska, H. Małuszyńska, and Z. Fojud, “Ferroelectric ordering in imidazolium perchlorate,” The Journal of Chemical Physics, vol. 124, no. 14, p. 144502, 2006.
  • [10] Z. Czapla, S. Dacko, B. Kosturek, and A. Waskowska, “Dielectric and optical properties related to phase transitions in an imidazolium perchlorate [C3N2H5ClO4] crystal,” Physica Status Solidi (b), vol. 242, pp. 122-124, 2005.
  • [11] J. Przesławski, and Z. Czapla, “Calorimetric studies of phase transitions in imidazolium perchlorate crystal,” Journal of Physics: Condensed Matter, vol. 18, no. 23, pp. 5517–5524, 2006.
  • [12] N. Kara, A. Kiraci, and H. Yurtseven, “Calculation of the Relaxation Time and the Activation Energy Close to the Lower Phase Transition in Imidazolium Perchlorate,” Journal of Basic & Applied Sciences, vol. 17, no. 1, pp. 79- 86, 2021.
  • [13] N. Kara, A. Kiraci, and H. Yurtseven, “Phenomenological approaches on the Nd3+ doped ferroelectric LaBGeO5,” Ferroelectrics, vol. 572, no. 1, pp. 13-26, 2021.
  • [14] A. Kiraci, “A phenomenological study on ferroelectric pyridinium tetrafluoroborate (C5NH6) BF4,” Thermochimica Acta, vol. 680, p. 178371, 2019.
  • [15] A. Kiraci, “The important role of N2(CH3)4 ion in the phase-transition mechanism of [N(CH3)4]2ZnBr4,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 5, p. 1053, 2020.
  • [16] H. Yurtseven, D. Kayisoglu, and W. H. Sherman, “Calculation of the specific heat for the first order, tricritical and second order phase transitions in NH4Cl,” Phase Transition, vol. 67, p. 399, 1999.
  • [17] A. R. Askun, and A. Kiraci, “Analysis and mathematical computation of some dynamic functions for the guanidine zinc sulfate,” Ferroelectrics, vol. 584, no. 1, pp. 39-50, 2021.
  • [18] H. Yurtseven, “Weakly first-order or nearly second-order phase transitions,” Phase Transition, vol. 47, no. 1, p. 59, 1994.
  • [19] H. Yurtseven, and W. H. Sherman, “Weakly first-order or nearly second-order phase transitions in ammonium halides,” Phase Transition, vol. 47, no. 1, p. 69, 1994.