Dondurarak Depolanan Balık Kıymasının Stabilizasyonu

Günümüzde, Türkiye’de ve dünya genelinde ıskarta ve ekonomik olmayan türler, bunun yanında işleme esnasında ortaya çıkan yan ürünler, insan sağlığı açısından çok faydalı protein, yağ asitleri, vitamin ve mineralleri içermektedir. İnsan gıdası olarak yeterince etkin bir şekilde değerlendirilemeyen bu stokların, soğuk şokuna karşı dayanıklı hale getirilmiş (kriyostabilize edilmiş) kıyma blokları halinde, yenilikçi formülasyon stratejileri ile fonksiyonel gıda olarak değerlendirilmeleri mümkün olmaktadır. Ancak özellikle dondurarak depolama esnasında lipidlerin ve proteinlerin oksidasyonu kalite kayıplarına neden olmaktadır. Antioksidanlar lipid oksidasyonunun engellenmesinde, kriyoprotektanlar ise, protein denatürasyonunun geciktirilmesinde yaygın olarak kullanılmaktadır. Sentetik katkı maddelerinin olası toksisite ve karsinojenik etkilerinden dolayı, doğal içeriklerin kullanılmasına yönelik ilgi her geçen gün artmaktadır. Bu nedenle antioksidatif ve kriyoprotektif etkiye sahip içeriklerle işlenen balık kıymasının dondurarak depolamadaki kararlığı önem arz etmektedir.

Stabilization of Frozen Stored Fish Mince

Today discard and fish species with low economic value as well as by products generated during fish processing are in Turkey and around the world contain protein, fatty acids, vitamins and minerals that are very beneficial for human health. It is possible to evaluate these stocks as a functional food, which cannot be used effectively as human food, with using innovative formulation strategies in the form of cryostabilized minced meat blocks. However oxidation of lipids and proteins especially during frozen storage causes quality losses. Antioxidants are widely used to prevent the lipid oxidation and cryoprotectants to delay protein denaturation. Due to the possible toxicity and carcinogenic effects of synthetic additives, the interest in using natural ingredients is increasing day by day. For this reason it is important to stabilize the minced fish blocks during frozen storage which are processed with natural cryoprotectants and antioxidants.

___

  • Aluko, R. (2015). Amino acids, peptides, and proteins as antioxidants for food preservation. In F. Shahidi (Ed.), Handbook of antioxidants for food preservation (pp. 105–140). Cambridge: Woodhead Publishing Limited.
  • Andersen, C. M., & Jørgensen, B. (2004). On the relation between water pools and water holding capacity in cod muscle. Journal of Aquatic Food Products Technology, 13, 13–23. DOI: 10.1300/J030v13n01_03
  • Benjakul, S., & Visessanguan, W. (2011). Impacts of freezing and frozen storage on quality changes of seafoods. In Sakamon Devahastin (Ed.), Physicochemical Aspects Of Food Engineering And Processing (pp. 283–306). CRC Press. Woodhead Publishing Limited.
  • Bertram, H. C., Krıstensen, M., Stdal, H., Baron, C.P., Young, J.F., & Andersen, H.J. (2007). Does oxidation affect the water functionality of myofibrillar proteins? Journal of Agricultural and Food Chemistry. 55, 2342-2348. DOI:10.1021/jf0625353
  • Cardoso, C.; Mendes, R.; & Nunes, M. L. (2007). Effect of Transglutaminase and Carrageenan on Restructured Fish Products Containing Dietary Fibres. International Journal of Food Science and Technology. 2007, 42, 1257–1264. DOI: 10.1111/j.1365-2621.2006.01231.x
  • Cheung, I. W. Y., Liceaga, A. M., & Li-Chan, E. C. Y. (2009). Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince. Journal of Food Science, 74, C588–C594. DOI: 10.1111/j.1750-3841.2009.01307.x
  • Cheung, I. W. Y., Liceaga, A. M., & Li-Chan, E. C. Y. (2009). Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen Pacific cod fillet mince. Journal of Food Science, 74, 588–594. DOI: 10.1111/j.1750-3841.2009.01307.x
  • Davies M.J. (2005). The oxidative environment and protein damage. Biochimica et Biophysica Acta, 1703, 93– 109. DOI:10.1016/j.bbapap.2004.08.007
  • Dyer, W. J. Food Res. (1951). Protein denaturation in frozen and stored fish. Journal of Food Science, 16, 522. DOI:10.1111/j.1365-2621.1951.tb17416.x
  • Food and Agriculture Organization of of the United Nations. The State of World Fisheries andAquaculture 2022. fao.org/3/cc0461en/cc0461enpdf.
  • Harnedy, P. A., & Fitz Gerald, R. J. (2012). Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 4, 6–24. DOI: 10.1016/j.jff.2011.09.001
  • Undeland, I., Ekstrand, B. & Lingnert, H. (1998). Lipid oxidation in minced herring (Clupea harengus) during frozen storage. Effect of washing and precooking. Journal of Agricultural and Food Chemistry, 46, 2319-2328. DOI: 10.1021/jf9707795
  • Jenkelunas, P.J., & Li-Chan, E.C.Y. (2018). Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince. Food Chemistry, 239, 535–543. DOI: 10.1016/j.foodchem.2017.06.148
  • Jiang, S. T., & Lee, T. C. J. (1985). Changes in free amino acids and protein denaturation of fish muscle during frozen storage. Journal of Agricultural and Food Chemistry, 33 (5), 839-844. DOI: 10.1021/jf00065a018
  • Jiang, S.T., Tsao, C.Y. & Lee, T.C. (1987). Effect of Free Amino Acids on the Denaturation of Mackerel Myofibrillar Proteins in Vitro during Frozen Storage at -20 °C. Journal of Agrícultural and. Food Chemistry, 35, 28-33. DOI: 10.1021/jf00073a007
  • Karnjanapratum, S., & Benjakul, S. (2015). Cryoprotective and antioxidative effects of gelatin hydrolysate from unicorn leatherjacket skin. International Journal Of Refrigeration, 4 9, 6 9 -7 8. DOI: 10.1016/j.ijrefrig.2014.09.016
  • Khan, M. A. A., Hossain, M. A., Hara, K., Osatomi, K., Ishihara, T., & Nozaki, Y. (2003). Effect of enzymatic fish-scrap protein hydrolysate on gel-forming ability and denaturation of lizard fish Saurida wanieso surimi during frozen storage. Fisheries Science, 69, 1271–1280. DOI: 10.1111/j.0919-9268.2003.00755.x
  • Kim, S., & Wijesekara, I. (2010). Development and biological activities of marine derived bioactive peptides: A review. Journal of Functional Foods, 2, 1–9. DOI: 10.1016/j.jff.2010.01.003
  • Kittiphattanabawon, P., Benjakul, S., Visessaguan, W., & Shahidi, F. (2012). Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles. LWT-Food Science and Technology, 47, 437–442. DOI: 10.1016/j.lwt.2012.02.003
  • Korzeniowska, M., Cheung, I. W. Y., & Li-Chan, E. C. Y. (2013). Effects of fish protein hydrolysate and freeze-thaw treatment on physicochemical and gel properties of natural actomyosin from Pacific cod. Food Chemistry, 138, 1967–1975. DOI: 10.1016/j.foodchem.2012.09.150
  • Lee, C.M. & Lian, P. (2001). Application of a surimi-fish mince blend in fish cake and kamaboko products. Paper given at International Symposium on More Efficient Utilization of Fish and Fisheries Products, Kyoto, Japan, 7-10 October 2001
  • Lee, C. M. (2011). Fish mince: Cryostabilization and product formulation. In: Handbook of Seafood Quality, Safety and Health Applications. Alasalvar, C., Shahidi, F., Miyashita, K., andWanasundara, U. (Eds.). Oxford, United Kingdom: Wiley-Blackwell. pp. 156–170.
  • Li, S. J., & King, A. J. (1999). Structural changes of rabbit myosin subfragment 1 altered by malonaldehyde, a byproduct of lipid oxidation. Journal of Agricultural and Food Chemistry, 47, 3124–3129. DOI: 10.1021/jf990028y
  • Lian, P., Lee, C.M, & Hufnagel, L. (2000). Physicochemical properties of frozen red hake (Urophycis chuss) mince as affected by cryoprotective ingredients. Journal of Food Science, 65, 1117-1123. DOI: 10.1111/j.1365-2621.2000.tb10249.x
  • Limpisophon, K., Iguchi, H., Tanaka, M., Suzuki, T., Okazaki, E., & Saito, T. (2015). Cryoprotective effect of gelatin hydrolysate from shark skin on denaturation of frozen surimi compared with that from bovine skin. Fisheries Science, 81, 383–392. DOI: 10.1007/s12562-014-0844-5
  • Liu, Q., Chan, Q., Kong, B., Han, J., He, X. (2014). The influence of superchilling and cryoprotectants on protein oxidation and structural changes in the myofibrillar proteins of common carp (Cyprinus carpio) surimi. Lebensmittel Wissenschaft und Technologie, (57) 2, 603-611. DOI: 10.1016/j.lwt.2014.02.023
  • Martínez-Alvarez O., Chamorro S., Brenes A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 2015;73:204–212. DOI: 10.1016/j.foodres.2015.04.005.
  • Mathew, S., & Prakash, V. (2007). Changes in Structural and Functional Attributes of Fish Mince Proteins in Presence of Cosolvent During Frozen Storage. International Journal of Food Properties, 10, 47–59. DOI: 10.1080/10942910600684252
  • Matsumoto, J. J. (1979). In Proteins at Low Temperature; Fennema, 0., Ed.; ACS Symposium Series 180; American Chemical Society: Washington, DC, 205-224.
  • Medina, I., Saeed, S. & Howell, N. (1999). Enzymatic oxidative activity in sardine (Sardina pilchardus) and herring (Clupea harengus) during chilling and correlation with quality. European Food Research Technology, 210, 34-38. DOI: 10.1007/s002170050528
  • Medina, I., & Pazos, M. (2010). Oxidation and protection of fish. In E. Decker, R. Elias, & D. J. McClements (Eds.), Oxidation in foods and beverages and antioxidant applications (pp. 91–120). Cambridge: Woodhead Publishing Limited.
  • Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology, 2, 299– 329. DOI: 10.1146/annurev-food-022510-133721
  • Mueller, J. P., & Liceaga, A. M. (2016). Characterization and cryoprotection of invasive silver carp (Hypophthalmicthys molitrix) protein hydrolysates. Journal of Aquatic Food Product Technology, 25, 131–143. DOI: 10.1080/10498850.2013.832452
  • Nielsen, R., & PlGOTT, G. (1994). Gel Strength Increased in Low-Grade Heat-Set Surimi with Blended Phosphates. Journal of Food Science., 59, 246–250. DOI:10.1111/j.1365-2621.1994.tb06940.x
  • Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., YanG, N., Xu, B., Jin, Z., Xu, X. (2014). Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods (7), 609-620. DOI: 10.1016/j.jff.2013.12.024.
  • Nikoo, M., Benjakul, S., & Xu, X. (2015). Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chemistry, 181, 295e303. DOI: 10.1016/j.foodchem.2015.02.095
  • Nikoo, M., Benjakul, S., Xu, X. (2015). Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chemistry, 181, 295–30. DOI: 10.1016/j.foodchem.2015.02.095
  • Nikoo, M., & Benjakul, S. (2015). Potential application of seafood-derived peptides as bifunctional ingredients, antioxidant-cryoprotectant: A review. Journal of Functional Foods, 19, 753–764. DOI: 10.1016/j.jff.2015.10.014
  • Nikoo, M., Benjakul, S., & Rahmanifarah, K. (2016). Hydrolysates from marine sources as cryoprotective substances in seafoods and seafood products. Trends in Food Science & Technology, 57, 40-51. DOI: 10.1016/j.tifs.2016.09.001
  • Olsen, R. L., Toppe, J., & Karunasagar, I. (2014). Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends in Food Science & Technology, 36, 144–151. DOI: 10.1016/j.tifs.2014.01.007
  • Okazaki, E., & Kimura, I. (2014). Frozen surimi and surimi-based products. In I. S. Boziaris (Ed.), Seafood processing: Technology, quality and safety (pp. 209–235).West Sussex: JohnWiley & Sons, Ltd.
  • Pangestuti, R., & Kim, S. K. (2013). Marine bioactive peptide sources: Critical points and the potential for new therapeutics. In S.-K. Kim (Ed.), Marine proteins and peptides: Biological activities and applications (pp. 533–544).West Sussex: JohnWiley & Sons, Ltd.
  • Saeed, S., & Howell, N.K. (2001). 12-Lipoxygenase activity in the muscle tissue of Atlantic mackerel (scomber scombrus) and its prevention by antioxidants. Journal Of The Science Of Food And Agriculture, 81, 745-750. DOI:10.1002/jsfa.878
  • Shahidi, F., & Ambigaipalan, P. (2015). Novel functional food ingredients from marine sources. Current Opinion in Food Science, 2, 123–129. DOI: 10.1016/j.cofs.2014.12.009
  • Samaranayaka, A. P. G., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment and potential applications. Journal of Functional Foods, 3, 229–254. DOI: 10.1016/j.jff.2011.05.006
  • Sánchez-Alonso, I., Haji-Maleki, R. & Borderias, A. J. (2007). Wheat Fiber as a Functional Ingredient in Restructured Fish Products. Food Chemistry, 100, 1037–1043. DOI: 10.1016/j. foodchem.2005.09.090
  • Shenouda, S. Y. K. (1980). Theories of protein denaturation during frozen storage of fish flesh. Advances in Food Research., 26, 275-311. DOI: 10.1016/S0065 2628(08)60320-1
  • Sikorski, Z.; Olley, J.; Kostuch, S. (1976). Protein changes in frozen fish. CRC. Critical Review Food Science and. Nutrition, 8, 97. DOI: 10.1080/10408397609527218
  • Sikorski, Z. Int. J. Refrig. (1978). Protein changes in muscle foods due to freezing and frozen storage. İnternational Journal of Refrigeration, 1 (3). 173-180. DOI:10.1016/0140-7007(78)90094-4
  • TÜİK, 2022. Su Ürünleri İstatistikleri https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr (Erişim tarihi: 01.07.2022) Suzuki, T. (1981). In Fish and Krill Proteins, Processing Technology; Applied Science: London, pp 1-56. DOI: 10.1007/978-94-011-6743-7_1
  • Walayat, N., Xiong, H., Xiong, Z., Moreno, H.M.,Nawaz, A.,Niaz, N., & Randhawa, M.A. (2022). Role of Cryoprotectants in Surimi and Factors Affecting Surimi Gel Properties: a review. Food Reviews International, 38 (6), 1103-1122. DOI:10.1080/87559129.2020.1768403
  • Yoon, K.S., Lee, C.M. & Hufnagel, L.A. (1991). Effect of washing on the texture and microstructere of frozen fish mince. Journal of Food Science, 56, 294- 298. DOI: 10.1111/j.1365-2621.1991.tb05265.x
  • Zhang, T., Li, Z., Wang, Y., Xue, Y. & Xue, C. (2016). Effects of Konjac Glucomannan on Heat-induced Changes of Physicochemical and Structural Properties of Surimi Gels. Food Research International, 83, 152–161. DOI: 10.1016/j.foodres.2016.03.007
Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2018
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi Deniz Bilimleri ve Teknolojisi Fakültesi
Sayıdaki Diğer Makaleler

Farklı Bitki Ekstrakt ve Esansiyel Yağların Lakerda Örneklerinden İzole Edilen Bakteriler Üzerine Antibakteriyel Etkilerinin Araştırılması

Dilek KAHRAMAN YILMAZ, Nermin BERİK

Dondurarak Depolanan Balık Kıymasının Stabilizasyonu

Şebnem TOLASA YILMAZ

İzmir Körfezi (Ege Denizi) Lesepsiyen Balıkları

Okan AKYOL

Irak'ta Balıkçılık Sektörünün Günümüzdeki Durumu: Eleştirel Bir Derleme

Muzaffer HARLIOĞLU, Shokri OMAR MUSTAFA MUSTAFA, Zahra BATOOL

Hindistan'ın Deniz Süs Kabuklarının Bir Kontrol Listesi: Dwarka ve Bet-Dwarka, Gujarat'dan Bir Vaka Çalışması

Mayurdan GADHAVİ, Zahra MAKDA, Dudhagara DARSHİTA, Shiyani JENİSHA, Shabanam SAİYAD

Van İlinde Su Ürünleri Üretiminin Mevcut Durumu

Muhammet DEMİR

Çanakkale Boğazı’ndan Yakalanan Kolyoz Balığında (Scomber japonicus) Monogenean Helmint Grubea coclear Diesing, 1758' in Varlığı

Ruhay ALDIK, Fikret ÇAKIR

Batı Afrika, Gana Kıyılarında Mercan Balıklarının (Pagrus caeruleostictus, Pagellus bellottii, Dentex angolensis ve Dentex congoensis) Popülasyon Dinamikleri

Samuel AMPONSAH, Berchie ASİEDU, Nii Commey AMARQUAYE, Emmanuel OFORİ-BOATENG, Nana Ama AFRANEWAA, Samuel HENNEH

Foça'da (Doğu Akdeniz, Türkiye) Trol Balıkçılığı Çöküşün Eşiğinde mi?

Vahdet ÜNAL, Fikret ÖNDES

İskenderun Körfezi'ndeki (Kuzeydoğu Akdeniz) Kahverengi ve Kırmızı Makroalglerin Temel Besin Maddesi ve Biyoaktif Bileşiklerindeki Mevsimsel Değişimler

İbrahim GÜR, Sevim POLAT