Süperkapasitör Uygulamaları için Paslanmaz Çelik Örgü Üzerine Nikel Kaplama Üretimi

Süperkapasitör uygulamaları için tek adımda paslanmaz çelik örgü akım toplayıcısı elektrokimyasal yöntemle kaplandı. Paslanmaz çelik ağı yüksek yüzey alanına sahip olduğundan, iyonların erişilebilirliği dökme paslanmaz çelikten daha kolaydır. İnce nikel filmler, sulu çözelti elektrolit ortamında, oda sıcaklığı koşulları altında, 150, 300 ve 600 saniye boyunca -1.5 V potansiyelinin uygulanmasıyla üç elektrotlu bir elektrokimyasal konfigürasyon sistemi ile sentezlendi. Hazırlanan nikel filmlerin elektrokimyasal kapasitif özellikleri 1 M KOH elektrolit çözeltisinde incelendi. Paslanmaz çelik örgü yüzeyinde elde edilen nikel kaplamaların mikro yapıları ağaç kabuklarına benzemektedir. Bu yüzden, yüksek yüzey alanına sahip elektrotlar, pirofosfat ortamından nikelin elektrodepolanması ile elde edildi. Nikel kaplı paslanmaz çelik örgü ve bazik elektrolit arasındaki iyon ve elektron transfer hızları arttırıldı. +0.2 V ve +0.6 V arasındaki pozitif potansiyelde redoks reaksiyonuna sahip nikel kaplı çelik örgü, katot elektrot olarak kullanılabilir. Nikel/paslanmaz çelik örgü elektrot, 5 mV s-1 tarama hızında 1090 F g-1 spesifik kapasitansa sahiptir. Paslanmaz çeliğin KOH elektrolitinde elektroaktivitesi nikel filmle karıştırıldığında, sulu çözelti içindeki paslanmaz çelik ağ yüzeyindeki nikel temelli kaplamalar, süperkapasitör uygulamalarında katot elektrodu olarak kullanılabilir.

Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications

A stainless steel mesh current collector was coated by one-step electrochemical method forsupercapacitor applications. As stainless steel mesh has a high surface area, accessibility ofions may be achieved easier than bulk stainless steel. Thin nickel films were synthesized in anaqueous solution electrolyte medium by a three-electrodes electrochemical configurationsystem under room temperature conditions by applying the potential of -1.5 V for 150, 300and 600 seconds. The electrochemical capacitive characterization of the prepared nickel filmswas investigated in 1 M KOH electrolyte solution. The surface morphology of the preparedelectrodes was examined. Microstructures of nickel coatings obtained on stainless steel wiresurface were similar to tree peels. Therefore, electrodes with high surface area were obtainedin the electrodeposition of nickel from pyrophosphate medium. The ion and electron transferrates between the nickel-coated stainless steel mesh and the alkaline electrolyte wereincreased. Nickel coated steel mesh having a redox reaction at positive potential between +0.2V and +0.6 V could be used as cathode electrodes. The nickel/stainless steel mesh electrodehas a specific capacity of 1090 F g-1at the scan rate of 5 mV s-1. As the electroactivity ofstainless steel in KOH electrolyte was increased with nickel film, nickel-based coatings onstainless steel mesh surface in aqueous solution can be used as cathode electrodes insupercapacitor applications.

___

  • Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., 2011. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59.
  • Carmezim M. J., Catarina F.S., 2017. Metal Oxides in Supercapacitors Electrolytes in Metal Oxide Supercapacitors. Elsevier.
  • Conway B. E., Birss V., Wojtowicz, J., 1997. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. Journal of Power Sources 66(1–2): 1–14.
  • Dubal D. P., Gund G. S., Lokhande C. D., Holze R., 2013. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Materials Research Bulletin 48(2): 923–28.
  • GambyJ., Taberna P. L., Simon P., Fauvarque J. F., Chesneau M., 2001. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. Journal of Power Sources 101(1): 109–16.
  • Godillot G., Guerlou-Demourgues L., Taberna P. L., Simon P., Delmas C., 2011. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors. Electrochemical and Solid-State Letters 14(10): A139.
  • Hu L., Choi J. W., Yang Y., Jeong S., La Mantia F., Cui L. F., Cui Y., 2009. Highly Conductive Paper for Energy-Storage Devices. Proceedings of the National Academy of Sciences 106(51): 21490– 94.
  • Jiang H., Ma J., Li C., 2012. Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials 24(30): 4197–4202.
  • Khaligh A., Li Z., 2010. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE transactions on Vehicular Technology 59(6): 2806–14.
  • Kulkarni S. B., Patil U. M., Shackery I., Sohn, J. S., Lee, S., Park, B., Jun, S., 2014. High-Performance Supercapacitor Electrode Based on a Polyaniline Nanofibers/3D Graphene Framework as an Efficient Charge Transporter. Journal of Materials Chemistry A 2(14): 4989–98.
  • Li Z., Wang J., Liu X., Liu S., Ou J., Yang S., 2011. Electrostatic Layer-by-Layer Self-Assembly Multilayer Films Based on Graphene and Manganese Dioxide Sheets as Novel Electrode Materials for Supercapacitors. Journal of Materials Chemistry 21(10): 3397–3403.
  • Safizadeh F., Ghali E., Houlachi G., 2015. Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions–a Review. International journal of hydrogen energy 40(1): 256– 74.
  • Shi M., Kou S., Yan X., 2014. Engineering the Electrochemical Capacitive Properties of Graphene Sheets in Ionic‐Liquid Electrolytes by Correct Selection of Anions. ChemSusChem 7(11): 3053–62.
  • Simon P., Gogotsi Y., 2010. Materials for Electrochemical Capacitors. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29.
  • Stoller M. D., Ruoff R. S., 2010. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy & Environmental Science 3(9): 1294–1301.
  • Vadiyar M. M., Bhise S. C., Kolekar S. S., Chang, J. Y., Ghule, K. S., Ghule, A. V., 2016. Low Cost Flexible 3-D Aligned and Cross-Linked Efficient ZnFe2O4 Nano-Flakes Electrode on Stainless Steel Mesh for Asymmetric Supercapacitors. Journal of Materials Chemistry A 4(9): 3504–12.
  • Wang K., Wu H., Meng Y., Wei Z., 2014. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 10(1): 14–31.
  • Wang R., Xu C., Lee J. M., 2016. High Performance Asymmetric Supercapacitors: New NiOOH Nanosheet/Graphene Hydrogels and Pure Graphene Hydrogels. Nano Energy 19: 210–21.
  • Jian X., Liu S., Gao Y., Tian W., Jiang Z., Xiao X., Yin L., 2016. Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions. Journal of Electrical Engineering 4(2): 75–87.
  • Yu G., Xie X., Pan L., Bao Z., Cui Y., 2013. Hybrid Nanostructured Materials for High-Performance Electrochemical Capacitors. Nano Energy 2(2): 213–34.
Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2459-1580
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü