Candida boidinii’nin Farklı Suşlarının Deltamethrini Parçalama Potansiyellerinin İn-vitro Koşullarda Belirlenmesi

Bitkisel üretimde kullanılan pestisitlerin gıdalarda kalıntılarının azalmasını etkileyen önemli faktörlerden biri de mikrobiyal faaliyetlerdir. Bu çalışmada, zeytin fermentasyonu salamurasından izole edilen Candida boidinii’nin yedi farklı suşunun bitkisel üretimde sıkça kullanılan sentetik piretroitli insektisit deltamethrin’i parçalama potansiyeli invitro koşullarda incelenmiştir. Bu amaçla, maya hücrelerinin esteraz enzim aktiviteleri ve deltamethrini karbon kaynağı olarak değerlendirme durumları tespit edilmiştir. Esteraz enzim aktivitesi ve deltamethrini karbon kaynağı olarak değerlendirme potansiyelleri yüksek olan suşların insektisiti parçalama düzeyleri gaz kromatografisi kütle spektrofotometresi (GC-MS) kullanılarak belirlenmiştir. Test edilen yedi suşun ikisinde (CB-1 ve CB-5) hem hücre gelişimi hem de esteraz aktivitesi açısından önemli düzeyde yüksek faaliyet belirlenmiştir. GC-MS kalıntı analizine göre, iki suşun ilk üç günde deltamethrin miktarında başlangıca göre sırasıyla % 41.4 ve 22.5 oranında azalmaya sebep olduğu, maya bulunmayan kontrol grubunda ise bu oranın sadece %11 olduğu tespit edilmiştir. CB-5 suşunda 10 gün içinde önemli düzeyde daha fazla deltamethrin yıkımı (%91) belirlenmiştir. Elde edilen sonuçlara göre C. boidinii’nin farklı suşlarının deltamethrinin parçalanmasında rol oynayabileceği yönünde güçlü kanıtlar ortaya konmuştur.

Determination of Deltamethrin Degradation Potentials of Different Candida boidinii Strains in In-vitro conditions

Microbial activities are one of the important factors affecting the reduction of the residues of pesticides used during plant production in foods. In this research, the potential of seven strains of Candida boidinii previously isolated from olive fermentation brines for the degradation of synthetic pyrethroid insecticide deltamethrin, commonly used in crop production, was investigated under in-vitro conditions. For this purpose, esterase enzyme activities of yeast cells and evaluation of deltamethrin as a carbon source were determined. Esterase enzyme activity and insecticide degradation levels of strains with high potential to evaluate deltamethrin as a carbon source were determined by using gas chromotography mass spectrophotometer (GC-MS). Two of the seven strains (CB-1 and CB-5) were displayed significant high activity both in terms of cell development and esterase activity. According to the GC-MS residue analysis, it was determined that the two strains caused a 41.4% and 22.5% decrease in the amount of deltamethrin in the first three days, respectively, compared to the initial levels, while this ratio was only 11% in the non-yeast control group. Significant further deltamethrin degradation (91%) was determined within 10 days in CB-5 strain. According to the results obtained, strong evidence has been revealed that the different strains of C. boidinii may play a role in the degradation of the deltamethrin.

___

  • Aksu, P. 2007. Developing of multi residue analyse method in determining pesticide residues on fruits and vegetables by gas chromatography/mass spectrometry, Doktora Tezi, Ege Üniversitesi Gıda Mühendisliği Bölümü.
  • Alvarez, M. E., Augier, M. V. and Baratti, J. 1999. Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. Bioscience, Biotechnology and Biochemistry, 63: 1865-1870.
  • Alves, M., Goncalves, T. and Quintas, C. 2012. Microbial quality and yeast population dynamics in cracked green table olives´ fermentations. Food Control, 23 (2): 363-368.
  • Anonim 2020a. Bitki Koruma Ürünleri Veri Bankası.https://bku.tarim.gov.tr (Erişim tarihi: 01.04.2020).
  • Anonim, 2020b. The Pesticide Properties Database. www.sitem.herts.ac.uk/aeru/ppdb/en/Reports/154.htm (Erişim tarihi: 01.04.2020).
  • Arroyo-Lopez, F. N., Querol, A., Bautista-Gallego, J. and Garrido-Fernandez, A. 2008. Role of yeasts in table olive production. International Journal of Food Microbiology, 128 (2): 189-196.
  • Bajwa, U. and Sandhu, K. S. 2014. Effect of handling and processing on pesticide residues in food - a review. Journal Food Science and Technology, 51: 201–220.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Chen, S., Lai, K., Li, Y., Hu, M., Zhang, Y. and Zeng, Y. 2011. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90: 1471-1483.
  • Cho, K. M., Math, R. K., Islam, S. M. A., Lim, W. J., Hong, S. Y., Kim, J. M., Yun, M. G., Chon, J. J. and Yun, H. D. 2009. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. Journal of Agricultural and Food Chemistry, 57: 1882-1889.
  • Choi, Y. J., Miguez, C. B. and Lee, B. H. 2004. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Applied Environmental Microbiology, 70: 3213-3221.
  • Cycon, M., Zmijowska A. and Piotrowska-Seget, Z. 2014. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science and Technology, 11: 1305-1316.
  • Dordevic, T. M., Siler-Marinkovic, S. S., Durovic, R. D., Dimitrijevic-Brankovic, S. I. and Gajic Umiljendic, J. S. 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture, 93: 3377-3383.
  • FAO 2019. Food and Agriculture Organisation, FAOSTAT, Crops. http://www.fao.org/faostat/en/#data/QC. (Erişim tarihi: 26.08.2019).
  • Fatichenti, F., Farris, G. A., Deiana, P., Cabras, P., Meloni, M. and Pirisi, F. M. 1983. A preliminary investigation into the effect of Saccharomyces cerevisiae on pesticide concentration during fermentation. European Journal Applied Microbiology Biotechnology, 18: 323–325.
  • Fatichenti, F., Farris, G. A., Deiana, P., Cabras, P., Meloni, M. and Pirisi, F. M. 1984. The effect of Saccharomyces cerevisiae on concentration of dicarboximide and acylamide fungicides and pyrethroid insecticides during fermentation. Applied Microbiology and Biotechnology, 20: 419–421.
  • Islam, S. M. A., Math, R. K., Cho, K. M., Lim, W. J., Hong, S. Y., Kim, J. M. Yun, M. G. Cho, J. J. and Yun, H. D. 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Journal of Agricultural and Food Chemistry, 58: 5380-5386.
  • Kara, G. N. ve Özbaş, Z. Y. 2013. Sofralık zeytin üretiminde doğal maya florasının önemi. Gıda, 38(6): 375-382. Kim, H. K., Park, S. Y. Lee J. K. and Oh, T. K. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology, and Biochemistry, 62: 66-71.
  • Kumral, A. Y. and Kumral, N. A. 2013. Decontamination of insecticides by lactic acid bacteria. Proceedings of the 24th International Scientific-Expert-Conference of Agriculture and Food Industry, 25-28 September, Sarajevo, Bosnia and Herzegovina, pp. 293-296.
  • Kumral, A.Y., Korukluoğlu, M., Türkel, S., Bektaş, D. 2013. Gemlik çeşidi siyah zeytinlerin fermentasyonunda bazı bileşenlerin değişimi ve etkili laktik asit bakterileri ile mayaların tanısı. Yayınlanmamış proje raporu (UAP(Z) 2010/49).
  • Kumral, A Y., Kumral, N. A. and Gurbuz, O. 2020. Chlorpyrifos and deltamethrin degradation potentials of two Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) strains. Turkish Journal of Entomology, 44 (2): 165-176.
  • Madiha, F. M., Farghaly, S., Zayed, M. A., Soliman D. and Soliman, M. 2013. Deltamethrin degradation and effects on soil microbial activity. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 48: 575-581.
  • Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot B. and Tsakalidou, E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16: 189-199.
  • Misra, A. K., Vinod, R. S. and Bhattacharyya, A. 1996. Degradation of fenvalerate (pyrethroid) pesticide in milk by lactic acid bacteria. Indian Journal of Dairy Science, 49: 635–639.
  • Morichi, T., Sharpe, M. E. and Reiter, B. 1968. Esterases and other soluble proteins of some lactic acid bacteria. Microbiology, 53: 405-414.
  • Peric, M., Raseta, J., Visacki, M. S. and Spiric A. 1980. Degradation of organochlorine pesticides as influenced by micrococci isolated from fermented sausages. Technologia Mesa, 21: 132–133.
  • Psani, M. and Kotzekidou, P. 2006. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World Journal of Microbiology and Biotechnology, 22 (12): 129-1336.
  • Randazzo, C. L., Fava, G., Tomaselli, F., Romeo, F. V., Pennino, G., Vitello, E. and Caggia, C. 2011. Effect of kaolin and copper based products and of starter cultures on green table olive fermentation. Food Microbiology, 28: 910–919.
  • Regueiro, J., Lopez-Fernandez, O., Rial-Otero, R., Cancho-Grande, B. and Simal-Gándara, J. A. 2015. Review on the fermentation of foods and the residues of pesticides - biotransformation of pesticides and effects on fermentation and food quality. Critical Reviews in Food Science and Nutrition, 55: 839–863.
  • Roberts, T. R., Hutson D. H. and Jewess, P. J. 1998. Metabolic Pathways of Agrochemicals: Insecticides and Fungicides (Vol. 1). Royal Society of Chemistry, Cambridge, UK, 1476 pp.
  • Ruediger, G. A., Pardo, K. H., Sas, A. N., Godden, P. W. and Pollnitz, A. P. 2005. Fate of pesticides during the winemaking process in relation to malolactic fermentation. Journal of Agriculture and Food Chemistry, 53: 3023–3026
  • SAS, 2007. SAS Institute. JMP version 7.0.2 Release Notes Cary, NC: SAS Institute Print Center, 1-20.
  • Simon, J. Y., 2014. The Toxicology and Biochemistry of Insecticides. CRC press, Boca Roton, Florida, USA, 380pp.
  • Sogorb, M. A. and Vilanova, E. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128: 215-228.
  • Solmaz, S. ve Ay, R. 2010. Akar ve Böceklerde Pestisitlerin Detoksifikasyonunda Rol Oynayan Enzimler. Bursa Uludag Üniv. Ziraat Fak. Derg., 24 (2): 137-148.
  • Temizkan, G. O. ve Arda, N. 2008. Moleküler biyolojide kullanılan yöntemler. Nobel Tıp Kitabevleri, İstanbul, No 3, 3. Baskı, 345s.
  • Wu, P. C., Liu, Y. H., Wang, Z. Y., Zhang, X. Y., Li, H., Liang, W. Q., Luo N., Hu, J. M., Lu, J. Q., Luan, T. G. and Cao, L. X. 2006. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Journal of Agricultural and Food Chemistry, 54: 836-842.
  • Zhao, X. H. and Wang, J. 2012. A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42 degrees C. Food Chemistry, 131: 300-304.