Düzeltme: Nörogenetik Hastalıklarda Alternatif Model Organizma: Köpekler

Köpekler, evcilleştirilme serüvenlerinde insanla yalnızca davranışsal olarak yakınlaşmakla kalmamış, birçok hastalığı da birlikte yaşar hale gelmiştir. Biyomedikal araştırmalar için uzun süreli, pahalı ve çok kontrollü deney hayvanları modelleri oluşturulmaktadır. Bunun yerine doğal olarak hastalığa sahip köpeklerin etik ve deontolojik kurallar çerçevesinde diagnostik, prognostik ve terapötik olarak değerlendirilmesi hem insan hem de hayvan tıbbında genetik hastalıkların fizyopatolojik mekanizmalarının anlaşılmasını kolaylaştırarak, yeni gen ve hücresel tedavi seçeneklerine olanak sağlayacaktır. Bu derlemede, translasyonel araştırmalar yapmayı hedefleyen bilim insanlarına, köpeklerin insanlardaki ile benzer nörogenetik hastalıkları hakkında bilgi verilmesi amaçlanmıştır.

Düzeltme: Alternative Model Organism in Neurogenetic Diseases: Dogs

The human has not been intimated the dog as only a behavioral during its domestication journey, but also many diseases have become to live together. Long-term, expensive and highly controlled experimental animal models are created for biomedical research. Instead of this, the use of naturally diseased dogs in the framework of ethical and deontological rules will facilitate understanding the physiopathological mechanisms of genetic diseases in both human and animal medicine. Thus, new gene and cell therapy options will be enabled. In this review, was aimed to give information, whose desired to do translational research, about canine neurogenetic diseases likely as humans.

___

  • 1. Wang X, Tedford RH. Dogs: Their Fossil Relatives and Evolutionary History. USA: Columbia University Press, 2008; p.219.
  • 2. Botigue LR, Song S, Scheu A, Gopalan S, Pendleton AL, et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nature Communications 2017; 8:16082. doi: 10.1038/ncomms16082.
  • 3. Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 2016; 352:6290:1228-1231. doi: 10.1126/science.aaf3161.
  • 4. Hedhammar ÅA, Indrebø A. Rules, regulations, strategies and activities within the Fédération Cynologique Internationale (FCI) to promote canine genetic health. The Veterinary Journal 2011; 189:2:141-146. doi:10.1016/j.tvjl.2011.06.011.
  • 5. Franco NH. Animal Experiments in Biomedical Research: A Historical Perspective. Animals (Basel) 2013; 3:1:238-273. doi: 10.3390/ani3010238.
  • 6. Kandir S, Keskin E. Serum IL-1 beta, IL-6, IL-10 and TNF-alpha Levels in Thyroidectomized Rats. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2016; 22:2:297-300. doi: 10.9775/kvfd.2015.14371.
  • 7. Kandir S, Keskin E. Effects of hypothyroidism and hyperthyroidism on hematological parameters in rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2016; 63:4:371-376. doi: 10.1501/Vetfak_0000002755.
  • 8. Kandır S, Er C, Karakurt S. Pre- and post-exercise ADAMTS-4 and ADAMTS-5 Levels in Concur Horses. Dicle Üniversitesi Veteriner Fakültesi Dergisi 2020; 13:2:99-103. doi: 10.47027/duvetfd.738477.
  • 9. Hytonen MK, Lohi H. Canine models of human rare disorders. Rare Dis 2016; 4:1:e1241362. doi: 10.1080/21675511.2016.1241362.
  • 10. Lindblad-Toh K. What animals can teach us about evolution, the human genome, and human disease. Upsala Journal of Medical Sciences 2020; 125:1-9. doi: 10.1080/03009734.2020.1722298.
  • 11. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438:803-819. doi: 10.1038/nature04338.
  • 12. Muller U, Graeber MB. Neurogenetic diseases: molecular diagnosis and therapeutic approaches. Journal of Molecular Medicine 1996; 74: 71-84. doi: 10.1007/BF00196782.
  • 13. Vallat JM, Goizet C, Tazir M, Couratier P, Magy L, et al. Classifications of neurogenetic diseases: An increasingly complex problem. Revue Neurologique (Paris) 2016; 172: 339-349. doi: 10.1016/j.neurol.2016.04.005.
  • 14. Green ED, Watson JD, Collins FS. Human Genome Project: Twenty-five years of big biology. Nature 2015; 526: 29-31. doi: 10.1038/526029a.
  • 15. Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science 2003; 300: 286-290. doi: 10.1126/science.1084564.
  • 16. Mellersh CS, Langston AA, Acland GM, Fleming MA, Ray K, et al. A linkage map of the canine genome. Genomics 1997; 46: 326-336. doi: 10.1006/geno.1997.5098.
  • 17. Parker HG, Ostrander EA. Canine genomics and genetics: running with the pack. PLoS Genetics 2005; 1:5:e58. doi: 10.1371/journal.pgen.0010058.
  • 18. Wang GD, Larson G, Kidd JM, vonHoldt BM, Ostrander EA et al. Dog10K: the International Consortium of Canine Genome Sequencing. National Science Review 2019; 6: 611-613. doi: 10.1093/nsr/nwz068.
  • 19. Park C-E. Study on chromosomes survey of Korea native dogs. Korean Journal of Veterinary Service 2011; 34: 291-296. doi: 10.7853/KJVS.2011.34.3.291.
  • 20. Switonski M, Reimann N, Bosma AA, Long S, Bartnitzke S, et al. Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosome Research 1996; 4: 306-309. doi: 10.1007/BF02263682.
  • 21. Reimann N, Bartnitzke S, Nolte I, Bullerdiek J. Working with canine chromosomes: current recommendations for karyotype description. Journal of Heredity 1999; 90: 31-34. doi: 10.1093/jhered/90.1.31.
  • 22. Ostrander EA, Wayne RK. The canine genome. Genome Research 2005; 15:1706-1716. doi: 10.1101/gr.3736605.
  • 23. Breen M. Canine cytogenetics--from band to basepair. Cytogenetic and Genome Research 2008; 120: 50-60. doi: 10.1159/000118740.
  • 24. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. The sequence of the human genome. Science 2001; 291:5507:1304-1351. doi: 10.1126/science.1058040.
  • 25. Giersch ABS. Introduction to Cytogenetics. McManus LM, Mitchell RN. eds. In: Pathobiology of Human Disease. San Diego: Academic Press; 2014, p.3304-3310.
  • 26. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, et al. The dog genome: survey sequencing and comparative analysis. Science 2003; 301: 1898-1903. doi: 10.1126/science.1086432.
  • 27. Cannarozzi G, Schneider A, Gonnet G. A phylogenomic study of human, dog, and mouse. PLoS Computational Biology 2007; 3: e2. doi: 10.1371/journal.pcbi.0030002.
  • 28. Nicholas FW. Online Mendelian Inheritance in Animals (OMIA): a record of advances in animal genetics, freely available on the Internet for 25 years. Animal Genetics 2021; 52: 3-9. doi: 10.1111/age.13010.
  • 29. Nicholas FW. Online Mendelian Inheritance in Animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals. Nucleic Acids Research 2003; 31: 275–277. doi: 10.1093/nar/gkg074.
  • 30. Starkey MP, Scase TJ, Mellersh CS, Murphy S. Dogs really are man's best friend--canine genomics has applications in veterinary and human medicine! Briefings in Functional Genomics & Proteomics 2005; 4: 112-128. Doi: 0.1093/bfgp/4.2.112.
  • 31. Nicholas FW, Crook A, Sargan DR. Internet resources cataloguing inherited disorders in dogs. The Veterinary Journal. 2011; 189: 132-135. doi:10.1016/j.tvjl.2011.06.009.
  • 32. Okubo M, Minami N, Goto K, Goto Y, Noguchi S, et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. Journal of Human Genetics 2016; 61: 483-489. doi: 10.1038/jhg.2016.7.
  • 33. Banks GB, Chamberlain JS. The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies. Current Topics in Developmental Biology 2008; 84: 431-453. doi: 10.1016/s0070-2153(08)00609-1.
  • 34. Yucel N, Chang AC, Day JW, Rosenthal N, Blau HM. Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regenerative Medicine 2018; 3:4. doi: 10.1038/s41536-018-0045-4.
  • 35. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018; 362: 86-91. doi: 10.1126/science.aau1549.
  • 36. McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Therapy 2006; 13: 1373-1381. doi: 10.1038/sj.gt.3302800.
  • 37. Schatzberg SJ, Olby NJ, Breen M, Anderson LV, Langford CF, et al. Molecular analysis of a spontaneous dystrophin 'knockout' dog. Neuromusc Disorders 1999; 9: 289-295. doi: 10.1016/s0960-8966(99)00011-5.
  • 38. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, et al. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Frontiers in Neuroscience 2019; 13:1310. doi: 10.3389/fnins.2019.01310.
  • 39. İşcan D, Koç F. Amiyotrofik Lateral Skleroz ve Gen Mutasyonları. Arşiv Kaynak Tarama Dergisi 2019; 28:2:161-169. doi: 10.17827/aktd.421472.
  • 40. Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regeneration Research 2018; 13: 2050-2054. doi: 10.4103/1673-5374.241445.
  • 41. Fiszdon K, Gruszczynska J, Siewruk K. Canine Degenerative Myelopathy-pathogenesis, current diagnostics possibilities and breeding implications regarding genetic testing. Acta Scientiarum Polonorum Zootechnica 2020; 19: 3-10. doi: 10.21005/asp.2020.19.1.01.
  • 42. Coates JR, Wininger FA. Canine degenerative myelopathy. The Veterinary Clinics of North America. Small Animal Practice 2010; 40:5:929-950. doi: 10.1016/j.cvsm.2010.05.001.
  • 43. Awano T, Johnson GS, Wade CM, Katz ML, Johnson GC, et al. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 2794-2799. doi: 10.1073/pnas.0812297106.
  • 44. Crisp MJ, Beckett J, Coates JR, Miller TM. Canine degenerative myelopathy: biochemical characterization of superoxide dismutase 1 in the first naturally occurring non-human amyotrophic lateral sclerosis model. Experimental Neurology 2013; 248:1-9. doi: 10.1016/j.expneurol.2013.05.009.
  • 45. Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. International Journal of General Medicine 2016; 9:53-64. doi: 10.2147/IJGM.S88552.
  • 46. Shelton GD. Myasthenia gravis and disorders of neuromuscular transmission. Veterinary Clinics of North America. Small Animal Practice 2002; 32: 189-206, vii. doi: 10.1016/s0195-5616(03)00085-8.
  • 47. Shelton GD, Schule A, Kass PH. Risk factors for acquired myasthenia gravis in dogs: 1,154 cases (1991-1995). Journal of the American Veterinary Medical Association 1997; 211: 1428-1431.
  • 48. Robat CS, Cesario L, Gaeta R, Miller M, Schrempp D, et al. Clinical features, treatment options, and outcome in dogs with thymoma: 116 cases (1999-2010). Journal of the American Veterinary Medical Association 2013; 243: 1448-1454. doi: 10.2460/javma.243.10.1448. 49. Granger N. Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-Tooth disease. The Veterinary Journal 2011; 188: 274-285. doi: 10.1016/j.tvjl.2010.06.003.
  • 50. Granger N, Lujan Feliu-Pascual A, Spicer C, Ricketts S, Hitti R, et al. Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model. PeerJ 2019; 7:e7983. doi: 10.7717/peerj.7983.
  • 51. Lassuthova P, Vill K, Erdem-Ozdamar S, Schroder JM, Topaloglu H, et al. Novel SBF2 mutations and clinical spectrum of Charcot-Marie-Tooth neuropathy type 4B2. Clinical Genetics 2018; 94: 467-472. doi: 10.1111/cge.13417.
  • 52. Chen M, Wu J, Liang N, Tang L, Chen Y, et al. Identification of a novel SBF2 frameshift mutation in charcot-marie-tooth disease type 4B2 using whole-exome sequencing. Genomics Proteomics Bioinformatics 2014; 12: 221-227. doi: 10.1016/j.gpb.2014.09.003.