Çevre dostu gümüş nanoparçacık sentezi

Gümüş nanopartiküllerin yeşil sentezinde, indirgeyici ajanlar olarak bakteriler, mayalar, mantarların yanı sıra enzimler, karbonhidratlar, yağlar, polifenoller, alkaloidler, flavonoidler, ve terpenoidler gibi bitki bileşenleri de kullanır. Bu çalışmada ilk kez çam kozalağının (pinus nigra) ekstresi kullanılmıştır. 1 mM gümüş nitrat çözeltisinin gümüş nanoparçacıklara indirgenmesi için yöntemin çok basit, uygun maliyetli ve kullanışlı olduğu kanıtlandı. Nanopartiküllerin sentezi, renksiz çözeltinin kahverengi renkli bir çözeltiye dönüştüğü görsel algılama ile doğrulandı. UV-görünür spektroskopi, XRD analizi, STEM, EDS ile karakterizasyonu yapıldı. UV-Görünür spektrum, AgNP'lerin Plazmon absorbansına karşılık gelen 411 nm de maksimum bir tepe gösterdi. Gümüş nanoparçacıkların boyutu, transmisyon elektron mikroskobu (STEM) ile belirlendiği üzere yaklaşık olarak 16-27 nm olduğu bulundu. Enerji dağıtıcı spektrumlar (EDS), nanopartiküllerin %91 saf haliyle gümüş içerdiğini ortaya çıkardı. Bu çalışmada gösterdi ki hızlı, ekonomik, yenilenebilir, sürdürülebilir ve toksik etki göstermeyen gümüş nanoparçacıkların sentezi mümkündür. Yüksek saflıkta biyosentezlenmiş bu partiküller; iyi iletkenlik, termal özellikleri, antibakteriyel özellikler ve optik özelliklere sahip olmalarından dolayı biyomedikal optik, kataliz, elektronik cihazlar vb. birçok uygulama alanında rahatlıkla kullanılabilir.

___

  • [1] P. Nartop, “Silver nanoparticles: ecofriendly surface sterilization of plant seeds in different shapes and sizes”, JAPS: Journal of Animal & Plant Sciences, 29, 2, 2019.
  • [2] S. Ahmad, S. Munir, N. Zeb, A. Ullah, B. Khan, J. Ali, & S. Ali, “Green nanotechnology: A review on green synthesis of nanoparticles—An ecofriendly approach”, International journal of nanomedicine, 14, 5087, 2019.
  • [3] M. Beykaya., A. Çağlar, “Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641. 2016.
  • [4] H. Hammamchi, “Determination of Bioactivities of Organic/Inorganic Nanoparticles Synthesized by Biological Ways and Their Uses for Therapeutic Purposes”, 2019.
  • [5] V. A. Basiuk, E. V. Basiuk, “Green processes for nanotechnology”, Springer, , 446. 2015.
  • [6] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, “Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches”, International journal of molecular sciences, , 17,9, 1534,2016.
  • [7] A. M. Holban, A. M. Grumezescu, E. Andronescu, “Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces”, In Surface Chemistry of Nanobiomaterials, 301-327. 2016.
  • [8] M. A. Mokammel, M. J. Islam, , M. Hasanuzzaman, M. S. J. Hashmi, “Nanoscale Materials for Self-Cleaning and Antibacterial Applications”, 315-324. 2022.
  • [9] Y. Zong, Z. Li, X. J. WangMa, Y. Men, “Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles” Ceramics international, 40(7), 10375-10382. 2014.
  • [10] V. Nachiyar, S. Sunkar, P. Prakash, “Biological synthesis of gold nanoparticles using endophytic fungi”, Der Pharma Chem, 7(11), 31-38. 2015.
  • [11] M. Ramesh, M. Anbuvannan, G. J. S. A. P. A. M. Viruthagiri, “Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864-870. 2015.
  • [12] L. Xiao, C. Liu, X. Chen, Z. Yang, “Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species”, Food and Chemical Toxicology, 90, 76-83. 2016.
  • [13] S. Rajeshkumar, M.H. Sherif, C. Malarkodi, M. Ponnanikajamideen, M.V. Arasu, N.A. Al-Dhabi, S.M. Roopan, “Cytotoxicity behavior of gold nanoparticles with optimized response surface model using fucoidan extracted from Padina tetrastromatica” Journal of Molecular Structure, 1228 ,129440. 2021.
  • [14] P. C. Nagajyothi, T. M. An, T. V. M. Sreekanth, J. I. Lee, D. J. Lee, K. D. Lee, “Green route biosynthesis: Characterization and catalytic activity of ZnO nanoparticles. Materials Letters”, 108, 160-163. 2013.
  • [15] M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, G. Annadurai, “Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors..” Journal of Nanostructure in Chemistry, 3 (1), 1-8. 2013.
  • [16] S. Jadoun, R. Arif, N.K. Jangid, “Green synthesis of nanoparticles using plant extracts: a review”, Environ. Chem. Lett. 19, 355–374, 2021.
  • [17] İ. Gülçin, M. E. Büyükokuroǧlu, M. Oktay, Ö. İ. Küfrevioǧlu, “Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. Journal of Ethnopharmacology”, 86(1), 51-58. 2003.
  • [18] L. Hamrouni, M. Hanan, I. Amri, A.E. Romane, S. Gargouri B. Jamoussi, “Allelopathic effects of essential oils of Pinus halepensis Miller: chemical composition and study of their antifungal and herbicidal activities. Arch Phytopathol PFL 48(2):145–158.
  • [19] Z. Djerrad, A. Djouahri, L. Kadik, “Variability of Pinus halepensis Mill. Essential oils and their antioxidant activities depending on the stage of growth during vegetative cycle. Chem Biodivers” 14(4):e1600,340,2017.
  • [20] Y. Guan, D. W. Zhang, W. Liu, L. L. Hao, S. C. Liu, “Research advance of natural polysaccharide in Pinus”, Journal Anhui Agricultural Sciences, 40(25), 12357-12359, 2012.
  • [21] Sangeetha, Gunalan; Rajeshwarı, Sivaraj; Venckatesh, Rajendran, “Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties” Materials Research Bulletin, 46.12: 2560-2566, 2011.
  • [22] N. Korkmaz, Y. Ceylan, A. Hamid, A. Karadağ, A.S. Bülbül, M.N. Aftab, F. Şen, “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities” , Journal of Drugs Delivery Science and Technology, 59, 101864, 1-7. 2020.
  • [23] J.Y. Song, B.S. Kim, “Rapid biological synthesis of silver nanoparticles using 548 plant leaf extracts, Bioprocess Biosyst. EnG” , https://doi.org/10.1007/ 549 s00449-008-0224-6. 2009.
  • [24] M. Sastry, K.S. Mayya, K. Bandyopadhyay, “pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles”, Colloids Surfaces A Physicochem. Eng. Asp. https://doi.org/10.1016/S0927- 7757(97)00087-3.1997.
  • [25] A. Henglein, J. Phys., “Physicochemical properties of small metal particles in solution”, ‘Microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition, https://doi.org/10.1021/ j100123a004. 1993.
  • [26] Meng, A. Yongde. “sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity Nanomaterials”, 5.2: 1124-1135. 2015.
  • [27] T. Rasheed, M. Bilal, C. Li, H. Iqbal, “Biomedical potentialities of Taraxacum officinale-based nanoparticles biosynthesized using methanolic leaf extract. Curr. Pharm. Biotechnol” 18, 1116– 1123. 2018.
  • [28] E. Ajayi, A. Afolayan, “Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci.: Nanosci. Nanotechnol”, 8, 015017, 2017.
  • [29] M. Sigamoney, S. Shaik, P. Govender, S. B. N. Krishna, J. Bot, S. Afr, C. Mart, “Sershen African leafy vegetables as bio-factories for silver nanoparticles: A case study on Amaranthus dubius” Ex Thell.. 103, 230– 240, 2016.
  • [30] U. B. Jagtap, V. A. Bapat, “Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity” Ind. Crops Prod. 46, 132– 137, 2013.