The effect of B4 C amount on wear behaviors of Al-Graphite/B4 C hybrid composites produced by mechanical alloying

The effect of B4 C amount on wear behaviors of Al-Graphite/B4 C hybrid composites produced by mechanical alloying

In this study, wear behavior of composite materials produced by mechanical alloyingmethod adding different amounts of B4C in the Al-Gr matrix were investigated. Afteradding 2% (vol.) graphite to the aluminum matrix, 3 different amounts (3%, 6% and9%) of B4C were added. The composite powders prepared were mechanically alloyedfor 60 minutes. The milled powders were cold-pressed under 700 MPa pressure. Thegreen compacts produced were sintered at 600 °C for 120 minutes. The sintered B4Creinforced aluminum composite materials were characterized by the Scanning Electron Microscope, X-ray diffraction, and hardness and density measurements. Weartests were performed on a standard pin-on-disc wear testing device with a load of 20N at a sliding speed of 0.5 ms-1 and four different sliding distances (between 250-1000m) according to ASTM G99 standard. As a result of the studies, the hardness increasesas the amount of B4C in the composite material increases, while the density of AMCdecreases. As a result of the wear tests, the highest weight loss was obtained in thenon-reinforced Al-Gr matrix alloy, while the lowest weight loss was obtained in 9% B4Creinforced composite materials. However, it was observed that there was a decreasein the friction coefficient with increasing amount of reinforcement.

___

  • [1] Kaczmar J. W., Pietrzak K., Włosiński W., The production and application of metal matrix composite materials, J. Mater. Process. Technol., 106 (1-3), 58-67, 2000.
  • [2] Alizadeh M., Paydar M. H., Jazi F. S., Structural evaluation and mechanical properties of nanostructured Al/ B4 C composite fabricated by ARB process, Compos. Part B: Eng., 44 (1), 339-343, 2013.
  • [3] Özyürek D., Tekeli S., An investigation on wear resistance of SiCp-reinforced aluminium composites produced by mechanical alloying method, Sci. Eng. Compos. Mater., 17 (1), 31-38, 2010.
  • [4] Özyürek D., Tekeli S., Güral A., Meyveci A., Gürü M. “Effect of Al2 O3 amount on microstructure and wear properties of Al-Al2 O3 metal matrix composites prepared using mechanical alloying method, Powder Metall. Met. Ceram., 49 (5-6), 289-294, 2010.
  • [5] Ozyurek D., Tuncay T., An investigation of sintering characteristics of reinforced with 15% TiB2 titanium composites, Metallofiz. Noveishie Tekhnol., 32 (5), 663-671, 2010.
  • [6] Ozyurek D., Ciftci I., An investigation into the wear behaviour of TiB2 particle reinforced aluminium composites produced by mechanical alloying, Sci. Eng. Compos. Mater., 18 (1-2), 5-12, 2011.
  • [7] Cabeza M., Feijoo I., Merino P., Pena G., Pérez M. C., Cruz S., Rey P., Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite, Powder Technol., 321, 31-43, 2017.
  • [8] Chen H. S., Wang W. X., Li Y. L., Zhou J., Nie H. H., Wu Q. C., The design, microstructure and mechanical properties of B4 C/6061Al neutron absorber composites fabricated by SPS, Mater. Des., 94, 360-367, 2016.
  • [9] Yazdani A., Salahinejad E., Evolution of reinforcement distribution in Al–B4 C composites during accumulative roll bonding, Mater. Des., 32 (6), 3137-3142, 2011.
  • [10] Zhang P., Li Y., Wang W., Gao Z., Wang B., The design, fabrication and properties of B4 C/Al neutron absorbers, J. Nucl. Mater., 437 (1-3), 350-358, 2013.
  • [11] Erek H. B., Özyürek D., Asan A., Corrosion behaviour and electrical conductivity of reinforced TiAl3 and B4 C hybrid aluminium composites, Acta Phys. Pol. A, 131 (1) 156-158, 2017.
  • [12] Srivatsan T. S., Ibrahim I. A., Mohamed F. A., Lavernia E. J., Processing techniques for particulate-reinforced metal aluminium matrix composites, J. Mater. Sci., 26 (22), 5965-5978, 1991.
  • [13] Lee H. S., Yeo J. S., Hong S. H., Yoon D. J., Na K. H., The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons, J. Mater. Process. Technol., 113 (1-3), 202-208, 2001.
  • [14] Pul M., Küçüktürk G., Çalin R., Şeker U., Effects of reinforcement volume fraction on the abrasive wear behaviour of Al-MgO composites produced by the vacuum infiltration method, Proc. IMechE Part J. J. Eng. Tribol., 225 (2), 84-90, 2011.
  • [15] Şimşek İ., Yıldırım M., Özyürek D., Şimşek D., Basınçsız infiltrasyon yöntemiyle üretilen SiO2 takviyeli alüminyum kompozitlerin aşınma davranışlarının incelenmesi, Politeknik Dergisi, 22 (1), 81-85, 2019.
  • [16] Şimşek İ., Yıldırım M., Tunçay T., Özyürek D., Şimşek D., Mekanik alaşımlama/öğütme yöntemi ile üretilen Al-SiC kompozitlerin incelenmesi, Technological Applied Sciences, 13 (2), 165-171, 2018.
  • [17] Çam S., Demir V., Özyürek D., Wear behaviour of A356/TiAl3 in situ composites produced by mechanical alloying, Metals, 6 (2), 34-53, 2016.
  • [18] Çolak N. Y., Turhan H., Toz metalurjisi yöntemi ile üretilen Al-Si/B4 C kompozit malzemenin mikroyapı ve mekanik özelliklerinin araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 259-266, 2016.
  • [19] Suresha S., Sridhara B. K., Effect of addition of graphite particulates on the wear behaviour in aluminiumsilicon carbide-graphite composites, Mater. Des., 31 (4), 1804-1812, 2010.
  • [20] Chu H. S., Liu K. S., Yeh J. W., An in situ composite of Al (graphite, Al4 C3 ) produced by reciprocating extrusion, Mater. Sci. Eng., A, 277 (1-2), 25-32, 2000.
  • [21] Jadhav P. R., Sridhar B. R., Nagaral M., Harti J. I., Evaluation of mechanical properties of B4 C and graphite particulates reinforced A356 alloy hybrid composites, Mater. Today:. Proc., 4 (9), 9972-9976, 2017.
  • [22] Baradeswaran A., Perumal A. E., Study on mechanical and wear properties of Al 7075/Al2 O3 /graphite hybrid composites, Compos. Part B: Eng., 56, 464-471, 2014.
  • [23] Chu H. S., Liu K. S., Yeh J. W., Damping behavior of in situ Al-(graphite, Al4 C3 ) composites produced by reciprocating extrusion, J. Mater. Res., 16 (5), 1372-1380, 2001.
  • [24] Aksöz S., Özdemir A. T., Bostan B., AA2014 alüminyum alaşım tozlarının karbon ile sentezlenmesi ve özelliklerinin belirlenmesi, J. Fac. Eng. Archit. Gaz., 27 (1), 109-115, 2012.
  • [25] Bostan B., Özdemir A. T., Kalkanli A., Microstructure characteristics in Al-C system after mechanical alloying and high temperature treatment, Powder Metall., 47 (1), 37-42, (2004).
  • [26] Mohanty R. M., Balasubramanian K., Seshadri S. K., Boron carbide-reinforced aluminum 1100 matrix composites: Fabrication and properties.” Mater. Sci. Eng., A, 498 (1-2), 42-52, 2008.
  • [27] Cheng J. P., Agrawal D. K., Komarneni S., Mathis M., Roy R., Microwave processing of WC-Co composities and ferroic titanates, Mater. Res. Innovations, 1 (1), 44-52, 1997.
  • [28] Ghasali E., Alizadeh M., Ebadzadeh T., hossein Pakseresht A., Rahbari A., Investigation on microstructural and mechanical properties of B4 C-aluminum matrix composites prepared by microwave sintering, J. Mater. Res. Technol., 4 (4), 411-415, 2015.
  • [29] Ay H., Özyürek D., Yıldırım M., Bostan B., The effects of B4 C amount on hardness and wear behaviours of 7075-B4 C composites produced by powder metallurgy method, Acta Phys. Pol. A, 129 (4), 565-568, 2016.
  • [30] Aksöz S., Özdemir A.T., Çalın R., Altınok Z., Bostan B., Effects of sintering, ageing and cryogenic treatments on structural and mechanical properties of AA2014- B4 C composite”, J. Fac. Eng. Archit. Gaz., 28 (4), 831- 839, 2013.
  • [31] Aksöz S., Bican O., Çalın R., Bostan B., Effect of T7 heat treatment on the dry sliding friction and wear properties of the SiC-reinforced AA 2014 aluminium matrix composites produced by vacuum infiltration, Proc. IMechE Part J. J. Eng. Tribol., 228 (3), 312-319, 2014.
  • [32] Aksöz S., Bostan B., Effects of the AA2014/B4 C MMCs production with casting and post casting sintering operations on wear behaviors, BORON, 3 (2), 132-137, 2018.
  • [33] Ipek R., Adhesive wear behaviour of B4 C and SiC reinforced 4147 Al matrix composites (Al/B4 C-Al/SiC), J. Mater. Process. Technol., 162, 71-75, 2005.
  • [34] Purohit R., Qureshi M. M. U., Rana R. S., The effect of hot forging and heat treatment on wear properties of Al6061-Al2 O3 nano composites, Mater. Today:. Proc., 4 (2), 4042-4048, 2017.
  • [35] Mahdavi S., Akhlaghi F., Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method, Tribol. Lett., 44 (1), 1-12, 2011.
  • [36] Zhao H., Liu L., Hu W., Shen B., Friction and wear behavior of Ni-graphite composites prepared by electroforming, Mater. Des., 28 (4), 1374-1378, 2007.
  • [37] Ravindran P., Manisekar K., Narayanasamy P., Selvakumar N., Narayanasamy R., Application of factorial techniques to study the wear of Al hybrid composites with graphite addition, Mater. Des., 39, 42-54, 2012.
  • [38] Akhlaghi F., Zare-Bidaki A., Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method, Wear, 266 (1-2), 37- 45, 2009.