Synthesis of Co2 B nanostructures and their catalytic properties for hydrogen generation

Synthesis of Co2 B nanostructures and their catalytic properties for hydrogen generation

Pure cobalt (II) boride nanoparticles/nanocylinders were synthesized in aqueous media under Argon blanket using cobalt chloride (CoCl2) and sodium borohydride (NaBH) as reactants. CoCl(0.325 g) was dissolved in cold distilled water (DDI) and the solution was introduced into a sealed glass reactor. Then, NaBHwas dissolved in DDI (90 mL) and the solution was added drop-wise into the reactor and stirred magnetically at 300 rpm. By the addition of NaBH4 (10 mL, 0.225 g) solution, amorphous black cobalt boride particles were synthesized immediately. The presence of crystalline CoB phase with high purity in the nanocylinders which is obtained by calcination at 500 oC was shown by X-ray diffraction spectroscopy. An amorphous Co2B structure was observed with the sample dried under vacuum. In the synthesis runs, Co2B nanoparticles with different morphological characteristics were achieved by changing the initial CoCl2 concentration and the reaction period. A microscopic structure in the form of nanocylinders was observed for the calcined products. The nanocylinder diameter increased from ca. 30 nm to 100 nm by increasing the reaction time from 3 to 120 min. CoCl2 initial concentration was also found another factor increasing the nanocylinder diameter. The nanocylinders with diameters between 80-500 nm were obtained by increasing CoCl concentration from 12.6 to 100.1 mM. The lowest and highest saturation magnetization values were obtained 19 and 68.5 emu/g for crystalline sample calcined under air (Co-Co2B mixture) and amorphous Co2B sample obtained by vacuum-drying, respectively. Amorphous and crystalline Co2B samples were used as catalyst for Hydrogen generation by the hydrolysis of NaBH4 in aqueous media. Amorphous CoB gave significantly higher H generation ratewith respect to the catalysts prepared by calcination of amorphous CoB under air or Ar at 500 oC. The maximum H2 generation rate was obtained as 1.1 L/g catalyst.min by using amorphous Co2B with 1 % w/w of initial NaBH4 concentration

___

  • [1] Akdim A., Demirci U., Muller D., Miele P., Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride, Int. J. Hydrogen Energy, 34, 2631-2637, 2009.
  • [2] Zhao J., Ma H., Chen J., Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts, Int. J. Hydrogen Energy, 32, 4711-4716, 2007.
  • [3] Ye W., Zhang H., Xu D., Ma L., Yi B., Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst, J. Power Sources, 164, 544- 548, 2007.
  • [4] Xu D., Dai P., Liu X., Cao C., Guo Q., Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution, J. Power Sources, 182, 616-620, 2008.
  • [5] Lin S. S. Y., Kim D. H., Ha S. Y., Hydrogen production from ethanol steam reforming over supported cobalt catalysts, Catal. Lett., 122, 295-301, 2008.
  • [6] Dai H. B., Liang Y., Wang P., Yao X., Rufford T., Lu M., Cheng H., High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution, Int. J. Hydrogen Energy, 33, 4405-4412, 2008.
  • [7] Hung T. F., Kuo H. C.,   Tsai C. W., Chen H. M., Liu R. S., Bing-Jhih Weng B. J., Lee J. F., An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride, J. Mater. Chem., 21, 11754-11759. 2011.
  • [8] Shubhanwita S., Abhirup B., Debnath D., Saibal G., Dipali B., Kajari K., Novel graphene supported Co rich connected core(Pt)-shell(Co) nano-alloy catalyst for improved hydrogen generation and electro-oxidation, Int. J. Hydrogen Energy, 41, (41), 18451–18464, 2016.
  • [9] Yuyao H., Kunyang W., Liang C., Wenxin Z., Abdullah M. A., Xuping S., Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation, Catal. Commun., 87, 94–97, 2016.
  • [10] Netskina O. V., Komova O. V., Simagina V. I., Odegova G.V., Prosvirin I. P., Bulavchenko O. A., Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts, Renewable Energy, 99, 1073–1081, 2016.
  • [11] Bilen M., Yılmaz O., Gürü M., Synthesis of LiBH4 from LiBO2 as hydrogen carrier and its catalytic dehydrogenation, Int. J. Hydrogen Energy, 40 (44), 15213-15217, 2015.
  • [12] Walter J. C., Zurawski A., Montgomery D., Thornburg M., Revankar S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources,179, 335-339, 2008.
  • [13] Hua D., Hanxi Y., Xinping A., Chuansin C., Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst, Int. J. Hydrogen Energy, 28, 1095-1100, 2003.
  • [14] Liu B. H., Li Z. P., Suda S., Nickel and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride, J. Alloys Compd., 415, 288-293, 2006.
  • [15] Soler L., Macanás J., Muñoz M., Casado J., Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions, Int. J. Hydrogen Energy, 32, 4702-4710, 2007.
  • [16] Park J. H., Shakkthivel P., Kim H. J., Han M. K., Jang J. H., Kim Y. R., Kim H. S., Shul Y. G., Investigation of metal alloy catalyst for hydrogen release from sodium borohydride for polymer electrolyte membrane fuel cell application, Int. J. Hydrogen Energy, 33, 1845-1852, 2008.
  • [17] Fernandes R., Patel N., Miotello A., Efficient catalytic properties of Co–Ni–P–B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4 , Int. J. Hydrogen Energy, 34, 2893-2900, 2009.
  • [18] Patel N., Patton B., Zanchetta C., Fernandes R., Guella G., Kale A., Miotello A., Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 33, 287- 292, 2008.
  • [19] Patel N., Fernandes R., Miotello A., Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution, J. Catal., 271,315-324, 2010.
  • [20] Ding X. L., Yuan X., Jia C., Ma Z. F., Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt-Copper-Boride (Co-Cu-B) catalysts, Int. J. Hydrogen Energy, 35 (20), 11077-11084, 2010.
  • [21] Patel N., Guella G., Kale A., Miotello A., Patton B., Zanchetta C., Mirenghi L., Rotolo P., Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions, Appl. Catal., A, 323, 18-24, 2007.
  • [22] Yan W, Yunshu L., Dan W., Shiwei W., Zhongqiu C., Ke Z., Hongxin L., Shigang X., Hydrogen generation from hydrolysis of sodium borohydride using nanostructured Ni-B catalysts, Int. J. Hydrogen Energy, 41 (36), 16077–16086, 2016.
  • [23] Zhihua L., Qiming L., Fang L., Shiduo Z., Xin X., Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2 O4 catalyst, Int. J. Hydrogen Energy, 2016, http://dx.doi.org/10.1016/j.ijhydene.2016.10.115.
  • [24] Zhenkai C., Yueping G., Jiantai M., In situ synthesis of graphene supported Co-Sn-B alloy as an efficient catalyst for hydrogen generation from sodium borohydride hydrolysis, Int. J. Hydrogen Energy, 41 (3), 1592–1599, 2016.
  • [25] Wu C., Wu F., Bai Y., Yi B., Zhang H., Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution, Mater. Lett., 59, 1748-1751, 2005.
  • [26] Jeong S., Kim R., Cho E., Kim H. J., Nam S. W., Oh I. H., Hong S. A., Kim S., A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst, J. Power Sources, 144, 129-134, 2005.
  • [27] Lee J., Kong K. Y., Jung C. R., Cho E., Yoon S. P., Han J., Lee T. G., Nam S.W., A structured Co–B catalyst for hydrogen extraction from NaBH4 solution, Catal. Today, 120, 305-310, 2007.
  • [28] Jeong S., Cho E., Nam S. W., Oh I. H., Jung U., Kim S., Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 , Int. J. Hydrogen Energy, 32, 1749-1754, 2007.
  • [29] Arzac G. M., Rojas T. C., Fernandez A., Boron Compounds as Stabilizers of a Complex Microstructure in a Co-B-based Catalyst for NaBH4 Hydrolysis, ChemCatChem, 3 (8), 1305-1313, 2011.
  • [30] Xiaochen S., Min D., Ming G., Bin Z., Weiping D., Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride, Chin. J. Catal., 34, 979-985, 2013.
  • [31] Gupta S., Patel N., Fernandes R., Kothari D., Miotello A., Mesoporous Co-B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 38, 14685-14692, 2013.
  • [32] Netskina O. V., Ozerova A. M., Komova O. V., Odegova G. V., Simagina V. I., Hydrogen storage systems based on solid-state NaBH4 /Cox B composite: Influence of catalyst properties on hydrogen generation rate, Catal. Today, 245, 86–92, 2015.
  • [33] Paladini M., Godinho V., Arzac G. M., Jiménez de Haro M. C., Beltrán A. M., Fernández A., Tailor-made preparation of Co–C, Co–B, and Co catalytic thin films using magnetron sputtering: insights into structure–composition and activation effects for catalyzed NaBH4 hydrolysis, RSC Adv., 6, 108611-108620, 2016.
  • [34] Nurettin S., Fahriye S., A facile synthesis route to improve the catalytic activity of inherently cationic and magnetic catalyst systems for hydrogen generation from sodium borohydride hydrolysis, Fuel Process. Technol., 132, 1–8, 2015.
  • [35] Ömer Ş., M. Sait İ., Erhan O., Cafer S., Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst, Int. J. Hydrogen Energy, 41 (4), 2539–2546, 2016.
  • [36] Kun-Yi A. L., Hsuan-Ang C., Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic im- idazolate framework, Chemical Engineering Journal, 296, 243–251, 2016.
  • [37] Yueping G., Gongxuan L., Graphene supported Co– Mo–P catalyst for efficient photocatalyzed hydrogen generation, Int. J. Hydrogen Energy, 41 (16), 6706– 6712, 2016.
  • [38] Ömer Ş., Dilek K., Cafer S., Hydrogen generation from hydrolysis of sodium borohydride with a novel palladium metal complex catalyst, J. Energy Inst., 89 (2), 182–189, 2016.
  • [39] Yang X. J., Li L. L., Sang W. L., Zhao J. L., Wang X. X., Yu C., Zhang X. H., Tang C. C., Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane, J. Alloys Compd., 693, 642–649, 2017.
  • [40] Özsaçmacı G., Çakanyıldırım Ç., Gürü M., Co-Mn/TiO2 catalyst to enhance the NaBH4 decomposition, Boron, 1 (1), 1-5, 2016.
  • [41] Braga A. H., Sodre E. R., Santos J. B. O., Marques C. M. P., Bueno J. M. C., Steam reforming of acetone over Ni- and Co-based catalysts: Effect of the composition of reactants and catalysts on reaction pathways, Nanotechnology, 27 (46), 2016.
  • [42] Nandi D. K., Manna J., Dhara A., Sharma P., Sarkar S. K., Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH4 hydrolysis, J. Vac. Sci. Technol. A, 34, 01A115, 2016.
  • [43] Chang J., Song W., Li T., Chen J., Wu H., Li C., Fan M., Accelerated Hydrolysis of Solid-state NaBH4 /Al System by Co2 B Milled with Li for Hydrogen Generation., J. New Mater. Electrochem. Syst, 19 (2), 109-115, 2016.
  • [44] G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Langmuir, 9, 162-169 (1993).
  • [45] Baris M., Simsek T., Akkurt A., Mechanochemical Synthesis and Characterization of Pure Co2 B Nanocrystals, Bull. Mater. Sci., 39 (4), 1119-1126, 2016.
Bor Dergisi-Cover
  • ISSN: 2149-9020
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: TENMAK Bor Araştırma Enstitüsü
Sayıdaki Diğer Makaleler

Synthesis of Co2 B nanostructures and their catalytic properties for hydrogen generation

Tuncay ŞİMŞEK, Mustafa BARIŞ

Ekrem YANMAZ, Claudia CASTİLLO-BERRİO, Ümit ALKAN, A. Tolga ÜLGEN, Fırat KARABOĞA, Osman ENİS, Didem ODABAŞI CİNGİ, Pelin ALCAN, İlkay SARAÇOĞLU

Synthesis and investigation of structural-mechanical-tribological properties of c-BN based BN thin films

İhsan EFEOĞLU, Ayşenur KELEŞ, Göksel DURKAYA, Yaşar TOTİK, Kıvılcım ERSOY

Kireçli toprakta mısır bitkisine (Zea mays everta) uygulanan borun verim ve bor kapsamına etkileri

Ayhan HORUZ, Cengiz ÖZCAN

İhsan Efeoğlu, Yaşar Totik, Ayşenur Keleş, Kıvılcım Ersoy, Göksel Durkaya

Esra Bilgin ŞİMŞEK

Emet kolemanit -3 mm konsantratör artığından dekrepitasyon ve briketleme yöntemleriyle satılabilir ürün eldesinin araştırılması

Medine KOCA, İsmail BENTLİ

Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation

Esra Bilgin ŞİMŞEK

Bulk ngB2 superconductor production by excess Mg and hot press methods and their properties

Ümit ' ALKAN, Pelin ALCAN, Ekrem YANMAZ, İlkay SARAÇOĞLU, Didem Odabaşı CİNGİ, Claudia Castillo BERRİO, A. Tolga ÜLGEN, Fırat -Osman KARABOĞA - ENİS

Otoklavda sentezlenen ZrB2-ZrO2 tozlarının farklı tekniklerle sinterlenmesi ve yığın yapıların mikroyapısal ve bazı mekanik özelliklerinin incelenmesi

Özge BALCI, Nazlı AKÇAMLI, Duygu AĞAOĞULLARI, M. Lütfi ÖVEÇOĞLU, İsmail DUMAN