Polimer grupları içeren yeni bir boronik asit ve boronat esterleri: spektroskopik özelliklerinin sentezi ve araştırılması

Bor elementini içeren kimyasal bileşiklerin gün geçtikçe artan önemi ile özgün çalışmalara yer verilmiştir. Bu amaçla ilk olarak metoksipolietilen glikol amin ve 4-formilfenilboronik asit reaksiyonu ile polimer grupları içeren yeni bir boronik asit ve boronat esterleri sentezlendi. Daha sonra yeni boronik asit içeren polimer grubunun çeşitli diollerle dehidrasyon reaksiyonu sonucunda polimer grupları içeren boronat esterleri elde edilmiştir. Ortaya çıkan yeni bor katkılı polimerlerin yapısı başarıyla sentezlendi. Bu polimerlerin yapıları NMR (1H, 13C ve 11B), LC-MS/MS spektrometresi, IR, UV-Vis absorbans spektroskopisi ve floresan spektroskopisi ile aydınlatıldı.

A new boronic acid and boronate esters containing polymer groups: synthesis and investigation of their spectroscopic properties

With the increasing importance of chemical compounds containing the boron element day by day, original studies have been included. For this aim, a new boronic acid and boronate esters containing polymer groups were synthesized by the reaction methoxypolyethylene glycol amine and 4-formylphenylboronic acid for the firstly. Then, as a result of the dehydration reaction of the new boronic acid containing polymer groups with various diols, the boronate esters containing polymer groups were obtained. The structure of the resulting new boron-doped polymers was successfully synthesized. The structures of these polymers were elucidated by NMR (1H, 13C and 11B), LC-MS/MS spectrometer, IR, UV-Vis absorbance spectroscopy and fluorescence spectroscopy.

___

  • [1] Fernandes, G. F. S., Denny, W. A., & Dos Santos, J. L. (2019). Boron in drug design: Recent advances in the development of new therapeutic agents. Eur J Med Chem, 179, 791-804.
  • [2] Frankland E., D. B. (1860). Justus Liebigs Annalen der Chem, 115(3), 319-322.
  • [3] Hall, D. G. (2011). Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Second Edition, 1-133.
  • [4] Kilic, A., Balci, T. E., Arslan, N., Aydemir, M., Durap, F., Okumuş, V., & Tekin, R. (2020). Synthesis of cis 1,2‐diol‐type chiral ligands and their dioxaborinane derivatives: Application for the asymmetric transfer hydrogenation of various ketones and biological evaluation. Applied Organometallic Chemistry, 34(10), e5835.
  • [5] Nishiyabu, R., Kubo, Y., James, T. D., & Fossey, J. S. (2011). Boronic acid building blocks: tools for self assembly. Chem Commun, 47(4), 1124-1150.
  • [6] Heleg-Shabtai, V., Aizen, R., Orbach, R., Aleman-Garcia, M. A., & Willner, I. (2015). Gossypol-cross-linked boronic acid-modified hydrogels: a functional matrix for the controlled release of an anticancer drug. Langmuir, 31(7), 2237-2242.
  • [7] Sek, J. P., Kaczmarczyk, S., Gunka, K., Kowalczyk, A., Borys, K. M., Kasprzak, A., & Nowicka, A. M. (2021). Boronate-appended polymers with diol-functionalized ferrocene: an effective and selective method for voltammetric glucose sensing. Dalton Trans, 50(3), 880-889.
  • [8] Tanaka, K., Chujo, Y., Ito, S., & Gon, M. (2021). Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polym. Chem., 12(44), 6372-6380.
  • [9] Cheng, F., & Jäkle, F. (2011). Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polymer Chemistry, 2(10), 2122-2132.
  • [10] Cambre, J. N., & Sumerlin, B. S. (2011). Biomedical applications of boronic acid polymers. Polymer, 52(21), 4631-4643.
  • [11] Jakle, F. (2010). Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications. Chem. Rev., 110, 3985-4022.
  • [12] Ma, R., & Shi, L. (2014). Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym. Chem., 5(5), 1503-1518.
  • [13] Yan, Y., Zhou, L., Sun, Z., Song, D., & Cheng, Y. (2022). Targeted and intracellular delivery of protein therapeutics by a boronated polymer for the treatment of bone tumors. Bioact Mater, 7, 333-340.
  • [14] Kilic, A., Sobay, B., Aytar, E., & Söylemez, R. (2020). Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy & Fuels, 4(11), 5682-5696.
  • [15] Jiménez, C. C., Farfán, N., Romero-Avila, M., Rodríguez, M., Aparicio-Ixta, L., Ramos-Ortiz, G., Maldonado, J. L., Santillan, R., Magana-Vergara, N.E., & Ochoa, M. E. (2014). Synthesis and chemical-optical characterization of novel two-photon fluorescent borinates derived from Schiff bases. Journal of Organometallic Chemistry, 755, 33-40.
  • [16] Kilic, A., Savci, A., Alan, Y., & Birsen, H. (2021). Synthesis and spectroscopic properties of 4,4′-bipyridine linker bioactive macrocycle boronate esters: photophysical properties and antimicrobial with antioxidant studies. Journal of Organometallic Chemistry, 941(7), 121807.
  • [17] Kilic, A., Patlak, B., Aydemir, M., & Durap, F. (2022). Preparation of catechol boronate esters enabled by N→B dative bond as efficient, stable, and green catalysts for the transfer hydrogenation of various ketones. Inorganica Chimica Acta, 534, 120812.
  • [18] Schmidt, M. P., Siciliano, S. D., & Peak, D. (2021). The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere, 276, 130150.
  • [19] Yuan, P., Cai, C., Tang, J., Qin, Y., Jin, M., Fu, Y., Li, Z., & Ma X. (2016). Anion acceptors diox- aborinane contained in solid state polymer electrolyte: preparation, character- ization, and DFT calculations, Adv. Funct. Mater, 26, 5930-5939.
  • [20] Cheng, J., Wei, K., Ma, X., Zhou, X., & Xiang, H. (2013). Synthesis and Photophysical Properties of Colorful Salen-Type Schiff Bases. J. Phys. Chem. C, 117(32), 16552-16563.
  • [21] Şen, P. (2019). Synthesis of a new boron complex with imine ligand: Synthesis, characterization and fluorescent properties. BORON, 4(1), 46-52.
  • [22] SahooSaikat, S., Maiti, S., Poddar, P., & Dhara, D. (2020). Cationic cross-linked polymers containing labile disulfide and boronic ester linkages for effective triple responsive DNA release. Colloids and Surfaces B: Biointerfaces, 191, 110988.