First principles investigations of Ta4 AlX3(X= B, C, N) MAX phase ceramics

First principles investigations of Ta4 AlX3(X= B, C, N) MAX phase ceramics

Ta4AlX3 (X=B, C, N) MAX phase ceramics have been examined using first principlescalculations in this study. Ta4AlX3 MAX phase ceramics have hexagonal crystalstructure and the formation energies have been determined for the optimizedcrystal structures. The elastic constants of Ta4AlX3 MAX phase ceramics havebeen determined and these constants satisfy the mechanical stability criteria. Inaddition, the mechanical properties such as bulk modulus, shear modulus, etc.have been obtained to reveal the detailed properties of these compounds. Theanisotropic elastic properties have been visualized in both 3D and 2D. Moreover,the thermal properties of Ta4AlX3 MAX phase ceramics such as thermal expansioncoefficient, heat capacity etc. have been studied in 0 to 1000 K temperature rangeand 0 to 40 GPa pressure range. In this study, Ta4AlB3 has been considered forthe first time along with Ta4AlC3 and Ta4AlN3 compounds and the effect of X atomto the properties of these compounds have been discussed in detail.

___

  • [1] Low I. M., Advances In Science and Technology of Mn+1AXn Phases, 1st Edition, Woodhead Pub, 2012.
  • [2] Sokol M., Natu V., Kota S., Barsoum M. W., On the chemical diversity of the max phases, Trends Chem., 1 (2), 210–223, 2019.
  • [3] Lin Z., Zhuo M., Zhou Y., Li M., Wang J., Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J. Am. Ceram. Soc., 89 (12), 3765–3769, 2006.
  • [4] Zhang J., Liu B., Wang J. Y., Zhou Y. C., Low-temperature instability of Ti2 SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations, J. Mater. Res., 24 (1), 39–49, 2009.
  • [5] Uddin M. M., Ali M. A., Ali M. S., Structural, elastic, electronic and optical properties of metastable MAX phase Ti5 SiC4 compound, Indian J. Pure Appl. Phys., 54 (6), 386-390, 2016.
  • [6] Sürücü G., Erkişi A., The first principles investigation of structural, electronic, mechanical and lattice dynamical properties of the B and N Doped M2 AX Type MAX Phases Ti2 AlB0.5C0.5 and Ti2 AlN0.5C0.5 Compounds, Boron, 3 (1), 24–32, 2018.
  • [7] Nowotny V. H., Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid State Chem., 5 (C), 27–70,1971.
  • [8] Lapauw T., Halim J., Lu J., Cabioc’h T., Hultman L., Barsoum M. W., Lambrinou K., et al., Synthesis of the novel Zr3 AlC2 MAX phase, J. Eur. Ceram. Soc., 36 (3), 943–947, 2016.
  • [9] Akhlaghi M., Tayebifard S. A., Salahi E., Shahedi A. M., Schmidt G., Self-propagating high-temperature synthesis of Ti3 AlC2 MAX phase from mechanicallyactivated Ti/Al/graphite powder mixture, Ceram. Int., 44 (8), 9671–9678, 2018.
  • [10] Qu L., Bei G., Stelzer B., Rueß H., Schneider J. M., Cao D., Zwaag S. et al., Synthesis, crystal structure, microstructure and mechanical properties of (Ti1- x Zrx )3 SiC2 MAX phase solid solutions, Ceram. Int., 45 (1), 1400–1408, 2019.
  • [11] Drouelle E., Brunet V., Cormier J., Villechaise P., Sallot P., Naimi F., Bernard F. et al., Oxidation resistance of Ti3 AlC2 and Ti3 Al0.8Sn0.2C2 MAX phases: A comparison, J. Am. Ceram. Soc., 103 (2), 1270–1280, 2020.
  • [12] Clark D. W., Zinkle S. J., Patel M. K., Parish C. M., High temperature ion irradiation effects in MAX phase ceramics, Acta Mater., 105, 130–146, 2016.
  • [13] Gonzalez-Julian J., Mauer G., Sebold D., Mack D. E., Vassen R., Cr2 AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges, J. Am. Ceram. Soc., 103 (4), 2362–2375, 2020.
  • [14] Jin S., Su T., Hu Q., Zhou A., Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2 Ga2 C, Mater. Res. Lett., 8 (4), 158–164, 2020.
  • [15] Kirill S., Kolincio K. K., Emelyanov A., Mielewczyk-Gryn A., Gazda M., Roman M., Pazniak A., Rodionova V. et al., Evolution of magnetic and transport properties in (Cr1− x Mnx )2 AlC MAX-phase synthesized by arc melting technique, J. Magn. Magn. Mater., 493, 165642/1-7, 2020.
  • [16] Xu J. Zhao M. Q, Wang Y., Yao W, Chen C., Anasori B., Sarycheva A. et al., Demonstration of Li-ion capacity of MAX phases, ACS Energy Lett., 1 (6), 1094–1099, 2016.
  • [17] Anasori B., Lukatskaya M. R., Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2 (2), 1–17, 2017.
  • [18] Guo Z., Zhou J., Zhu L., Sun Z., MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A, 4 (29), 11446–11452, 2016.
  • [19] Pang J. Mendes R. G., Bachmatiuk A., Zhao L., Ta H. Q., Gemming T., Liu H. et al., Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev., 48 (1), 72–133, 2019.
  • [20] Gao G., Ding G., L J., Yao K., Wu M., Qian M., Monolayer MXenes: Promising half-metals and spin gapless semiconductors, Nanoscale, 8 (16), 8986–8994, 2016.
  • [21] Surucu G., Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2 AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds, Mater. Chem. Phys., 203, 106–117, 2018.
  • [22] Gencer A., Surucu G., Electronic and lattice dynamical properties of Ti2 SiB MAX phase, Mater. Res. Express, 5 (7), 076303/1-9, 2018.
  • [23] Surucu G., Erkisi A., An ab initio study on the investigation of structural, electronic, mechanical and lattice dynamical properties of the M2 AX type MAX phases Sc2 AlB0.5C0.5, Sc2 AlB0.5N0.5 and Sc2 AlC0.5N0.5 compounds, Mater. Res. Express, 4 (10), 106520/1-13, 2017.
  • [24] Chakraborty P., Chakrabarty A., Dutta A., Saha-Dasgupta T., Soft MAX phases with boron substitution: A computational prediction, Phys. Rev. Mater., 2 (10), 103605/1-6, 2018.
  • [25] Surucu G., Gencer A., Wang X., Surucu O., Lattice dynamical and thermo-elastic properties of M2 AlB (M= V, Nb, Ta) MAX phase borides, J. Alloys Compd., 819, 153256/1-10, 2020.
  • [26] Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y., Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2 AlC (M= Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2 AlN, and hypothetical M2 AlB phases, J. Phys.: Condens. Matter, 26 (50), 505503/1-12, 2014.
  • [27] Griseri M., Tunca B., Lapauw T., Huang S, Popescu L., Barsoum M. W., Lambrinou K. et al., Synthesis, properties and thermal decomposition of the Ta4 AlC3 MAX phase, J. Eur. Ceram. Soc., 39 (10), 2973–2981, 2019.
  • [28] Deng X. H., Fan B. B., Lu W., First-principles investigations on elastic properties of α- and β- Ta4 AlC3 , Solid State Commun., 149 (11–12), 441–444, 2009.
  • [29] Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Elastic properties of Ta4 AlC3 studied by first-principles calculations, Solid State Commun., 147 (7–8), 246–249, 2008.
  • [30] Lane N. J., Naguib M., Presser V., Hug G., Hultman L., Barsoum M. W., First-order Raman scattering of the MAX phases Ta4 AlC3 , Nb4 AlC3 , Ti4 AlN3 , and Ta2 AlC, J. Raman Spectrosc., 43 (7), 954–958, 2012.
  • [31] Hu C. Lin Z., He L., Bao Y., Wang J., Li M., Zhouet Y. et al., Physical and mechanical properties of bulk Ta4 AlC3 ceramic prepared by an in situ reaction synthesis/Hot-Pressing Method, J. Am. Ceram. Soc., 90 (8), 2542–2548, 2007.
  • [32] Wang J., Wang J., Zhou Y., Lin Z., Hu C., Ab initio study of polymorphism in layered ternary carbide M4 AlC3 (M = V, Nb and Ta), Scr. Mater., 58 (12), 1043–1046, 2008.
  • [33] Lu W., Deng X., Wang H., Huang H., He L., Electronic structure and chemical bonding of α- and β-Ta4 AlC3 phases: Full-potential calculation, J. Mater. Res., 23 (9), 2350–2356, 2008.
  • [34] Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Bonding properties and bulk modulus of M4 AlC3 (M = V, Nb, and Ta) studied by first-principles calculations, Phys. status solidi B, 246 (5), 1039–1043, 2009.
  • [35] Peng F., Chen D., Yang X., Elasticity and thermodynamic properties of α-Ta4 AlC3 under pressure, J. Alloys Compd., 489 (1), 140–145, 2010.
  • [36] Li C., Wang Z., Wang C., Effects of aluminum vacancies on electronic structure and optical properties of Ta4 AlC3 in situ: A first principles study, Phys. B: Condens. Matter, 406 (20), 3906–3910, 2011.
  • [37] Lane N. J., Eklund P., Lu J., Spencer C. B., Hultman L., Barsoum M. W., High-temperature stability of α-Ta4 AlC3 , Mater. Res. Bull., 46 (7), 1088–1091, 2011.
  • [38] Li C., Wang Z., First principles prediction of structural and mechanical properties of the nanolaminate compound M4 AlN3 (M= V, Nb, and Ta), Phys. status solidi B, 248 (7), 1639–1644, 2011.
  • [39] Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Int. J. Comput. Mater. Sci., 6 (1), 15–50, 1996.
  • [40] Kresse G. Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (16), 11169–11186, 1996.
  • [41] Kresse G. Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (3), 1758–1775, 1999.
  • [42] Blöchl P. E., Projector augmented-wave method, Phys. Rev. B, 50 (24), 17953–17979, 1994.
  • [43] Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (18), 3865–3868, 1996.
  • [44] Pack J. D., Monkhorst H. J., Special points for Brillouin-zone integrations—a reply, Phys. Rev. B, 16 (4), 1748–1749, 1977.
  • [45] Momma K., Izumi F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44 (6), 1272–1276, 2011.
  • [46] Le Page Y., Saxe P., Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65 (10), 104104/1-14, 2002.
  • [47] Gaillac R., Pullumbi P., Coudert F.-X., ELATE: An open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28 (27), 275201/1-5, 2016.
  • [48] Blanco M. A., Francisco E., Luaña V., GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158 (1), 57–72, 2004.
  • [49] Woolfson M. M., Solid state physics 3. theory of lattice dynamics in the harmonic approximation, Acta Crystallogr. Sect. A, 29 (3), 314–314, 1973.
  • [50] Born M., On the stability of crystal lattices, I, Math. Proc. Cambridge Philos. Soc., 36 (2), 160–172, 1940.
  • [51] Mouhat F., Coudert F.-X., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90 (22), 224104/1-4, 2014.
  • [52] Surucu G., Colakoglu K., Deligoz E., Korozlu N., FirstPrinciples Study on the MAX Phases Tin+1GaNn (n=1,2 and 3), J. Electron. Mater. 45 (8), 4256–4264, 2016.
  • [53] Baysal M. B., Surucu G., Deligoz E., Ozısık H., The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications, Int. J. Hydrogen Energy, 43 (52), 23397–23408, 2018.
  • [54] Flórez M., Recio J. M., Francisco E., Blanco M. A., Pendás A. M., First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B - Condens. Matter Mater. Phys., 66 (14), 1–8, 2002.