Enhancing the mechanical features of poly(vinyl alcohol) nanofibers with the addition of boron nitride

Enhancing the mechanical features of poly(vinyl alcohol) nanofibers with the addition of boron nitride

Improvement of nano-sized products with boron additives with remarkable properties has become a popular trend for many different application areas. Here, we have reported an efficient poly(vinyl alcohol) (PVA) based composite nanofiber which was functionalized with the hexagonal boron nitride (h-BN) via electrospinning technique, for the first time as far as known, for body-armor and protective clothing applications. PVA-based composite nanofibers containing h-BN with a diameter of approximately 326 nm have shown significant mechanical features compared to pure PVA nanofibers with a diameter of about 223 nm. Mechanical features were investigated by nanoindentation and the results of nanoindentation demonstrated that the elastic modulus of PVA nanofibers increased by 77%, and hardness values of polymeric nanofibers reached ten times more, by the addition of h-BN. FTIR and XRD characterizations approved that there is no chemical change of h-BN when it was integrated into the PVA based composite nanofibers. We exceptionally believe that the achieved results offer a potential lightness and cost-effective strategy for body armor and protective clothing applications in contrast to boron carbide-based body armor products, which have main problems such as weightiness and high-priced.

___

  • [1] Hey-Hawkins E., Teixidor C. V., Boron-based compo-unds: Potential and emerging applications in medicine, 1st edition, John Wiley&Sons Ltd., Sussex, UK, 2018.
  • [2] Venegas J. M., McDermott W. P., Hermans I., Seren-dipity in catalysis research: Boron-based materials for alkane oxidative dehydrogenation, Acc. Chem. Res., 51, 2556-2564, 2018.
  • [3] Jiang N., Li B., Ning F., Xia D., All boron-based 2D ma-terial as anode material in Li-ion batteries, J. Energy Chem., 27 (6), 1651-1654, 2018.
  • [4] Yu S., Wang X., Pang H., Zhang R., Song W., Fu D., Hayat T., et al., Boron nitride-based materials for the removal of pollutants from aqueous solutions: a revi-ew, Chem. Eng. J., 333, 343-360, 2018.
  • [5] Zheng Z., Cox M., Li B., Surface modification of hexa-gonal boron nitride nanomaterials: A review, J. Mater. Sci., 53 (1), 66-99, 2018.
  • [6] Bosak A., Serrano J., Krisch M., Watanabe K., Tani-guchi T., Kanda H., Elasticity of hexagonal boron nit-ride: Inelastic x-ray scattering measurements, Phys. Rev. B: Condens. Matter, 73, 41402, 2006.
  • [7] Jiang S., Chen Y., Duan G., Mei C., Greiner, A., Agar-wal, S., Electrospun nanofiber reinforced composites: a review, Polym. Chem., 9, 2685-2720, 2018.
  • [8] Hwang H. J., Barakat N. A. M., Kanjwal M. A., Sheikh F. A., Kim H. Y., Abadir M. F., Boron nitride nanofibers by the electrospinning technique, Macromol. Res., 18, 551-557, 2010.
  • [9] Ban C., Li L., Wei L., Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film, RSC Adv., 8, 29141-29146, 2018.
  • [10] Mirhaji E., Afshar M., Rezvani S., Yoosefian M., Boron nitride nanotubes as a nanotransporter for anti-cancer docetaxel drug in water/ethanol solution, J. Mol. Liq., 271, 151-156, 2018.
  • [11] Jakubinek M. B., Ashrafi B., Martinez-Rubi Y., Guan J., Rahmat M., Kim K. S., Dénommée S., et al., Nanotube Superfiber Materials, Chap. 5: Boron Nitride Nanotube Composites and Applications, Elsevier Inc., Amster-dam, Hollanda, 2019.
  • [12] Esrafili M. D., Heydari S., Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO2: a DFT study, Struct. Chem., 29 (1), 275-283, 2018.
  • [13] Kvashnin D. G., Matveev A. T., Lebedev O. I., Yakob-son B. I., Golberg D., Sorokin P. B., Shtansky D. V., Ultrasharp h-BN nanocones and the origin of their high mechanical stiffness and large dipole moment, J. Phys. Chem. Lett., 9 (17), 5086-5091, 2018.
  • [14] Oku T., Narita I., Tokoro H., Synthesis and magnetic property of boron nitride nanocapsules encaging iron and cobalt nanoparticles, J. Phys. Chem. Solids, 67 (5-6), 1152-1156, 2006.
  • [15] Oku T., Kuno M., Synthesis, argon/hydrogen storage and magnetic properties of boron nitride nanotubes and nanocapsules, Diam. Relat. Mater., 12 (3-7), 840-845, 2003.
  • [16] Türkez H., Arslan M. E., Sönmez E., Açıkyıldız M., Ta-tar A., Geyikoğlu F., Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics, Cytotechnology, 71 (1), 351-361, 2019.
  • [17] Kıvanç M., Barutca B., Koparal A. T., Göncü Y., Bos-tancı S. H., Ay N., Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activiti-es, cell viability, Mater. Sci. Eng., 91, 115-124, 2018.
  • [18] Wang W., Li Z., Prestat E., Hashimoto T., Guan J., Kim K. S., Kingston C. T., et al., Reinforcement of polymer-based nanocomposites by thermally conductive and electrically insulating boron nitride nanotubes, ACS Appl. Nano Mater., 3 (1), 364-374, 2019.
  • [19] Li R., Lin J., Fang Y., Yu C., Zhang J., Xue Y., Liu Z., et al., Porous boron nitride nanofibers/PVA hydrogels with improved mechanical property and thermal stabi-lity, Ceram. Int., 44 (18), 22439-22444, 2018.
  • [20] Zhang R., Wan W., Qiu L., Wang Y., Zhou Y., Prepa-ration of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation, Appl. Surf. Sci., 419, 342-347, 2017.
  • [21] Zhang J., Lei W., Chen J., Liu D., Tang B., Li J., Wang X., Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanoshe-ets and cellulose nanocrystals, Polymer, 148, 101-108, 2018.
  • [22] Avci H., Akkulak E., Gergeroglu H., Ghorbanpoor H., Uysal O., Sariboyaci A. E., Demir B., et al., Flexible poly(styrene-ethylene-butadiene-styrene) hybrid na-nofibers for bioengineering and water filtration applica-tions, J. Appl. Polym. Sci., 137 (26), 49184, 2020.
  • [23] Avci H., Gergeroglu H., Synergistic effects of plant ext-racts and polymers on structural and antibacterial pro-perties for wound healing, Polym. Bull., 76, 3709-3731, 2019.
  • [24] Avci H., Ghorbanpoor H., Nurbas M., Preparation of origanum minutiflorum oil-loaded core-shell structured chitosan nanofibers with tunable properties, Polym. Bull., 75, 4129-4144, 2018.
  • [25] Raghavan P., Lim D. H., Ahn J. H., Nah C., Sherrington D. C., Ryu H. S., Ahn H. J., Electrospun polymer na-nofibers: The booming cutting edge technology, React. Funct. Polym., 72 (12), 915-930, 2012.
  • [26] Yin C. G., Ma Y., Liu Z. J., Fan J. C., Shi P. H., Xu Q. J., Min Y. L., Multifunctional boron nitride nanosheet/ polymer composite nanofiber membranes, Polymer, 162, 100-107, 2019.
  • [27] Cakmak Y., Canbolat M. F., Cakmak E., Dayik M., Pro-duction and characterization of boron nitride-doped nanofiber mats created through electrospinning, J. Ind. Text., 47 (6), 993-1005, 2018.
  • [28] Liu Z., Zhao K., Luo J., Tang Y., Electrospinning of bo-ron nitride nanofibers with high temperature stability, Scr. Mater., 170, 116-119, 2019.
  • [29] Aydın H., Çelik S. Ü., Bozkurt A., Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application, Solid State Ionics, 309, 71-76, 2017.
  • [30] Chen M., Zhang S., Zhang J., Chen Q., Electrospun carbon nanofiber/boron nitride composites as flexible anodes for lithium-ion batteries, J. Nanosci. Nanotech-nol., 19, 220-225, 2019.
  • [31] Ozbek B., Erdogan B., Ekren N., Oktar F. N., Akyol, S., Ben-Nissan, B., Sasmazel, H. T., et al., Production of the novel fibrous structure of poly(ε-caprolactone)/ tri-calcium phosphate/hexagonal boron nitride compo-sites for bone tissue engineering, J. Aust. Ceram. Soc., 54, 251-260, 2018.
  • [32] Nasr M., Viter R., Eid C., Habchi R., Miele P., Beche-lany M., Enhanced photocatalytic performance of no-vel electrospun BN/TiO2 composite nanofibers, New J. Chem., 41, 81-89, 2017.
  • [33] Economy J., Anderson R. V., Properties and uses of boron nitride fibers, Text. Res. J., 36 (11), 994-1003, 1966.
  • [34] Crouch I. G., Body armour–New materials, new systems, Def. Technol., 15 (3), 241-253, 2019.
  • [35] Lakov L., Shunqi Z., St, A., Study of the effectiveness of corundum and boron carbide ceramics in hybrid pro-tection systems, Secur. Futur., 3, 63-65, 2019.
  • [36] Cegła M., Habaj W., Podgórzak P., Development of lightweight bulletproof vest inserts with increased pro-tection capability, Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 5, 23-34, 2014.
  • [37] Agrawal B. J., High performance textiles for ballistic protection, Defense Science Research Conference and Expo (DSR), IEEE, Singapore- Republic of Singa-pore, 1-4, August 3-5, 2011.
  • [38] Gorji M., Bagherzadeh R., Fashandi H., Electrospun Nanofibers, Chap. 21: Electrospun Nanofibers in Pro-tective Clothing, Elsevier Inc., Londra, UK, 2016.
  • [39] Jia Y. T., Gong J., Gu X. H., Kim H. Y., Dong J., Shen X. Y., Fabrication and characterization of poly (vinyl alco-hol)/chitosan blend nanofibers produced by electros-pinning method, Carbohydr. Polym., 67 (3), 403-409, 2007. [40] Kharazmi A., Faraji N., Hussin R. M., Saion E., Yunus W. M. M., Behzad K., Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthe-sized through a radiolytic approach, Beilstein J. Nano-technol., 6, 529-536, 2015.
  • [41] Singh B., Kaur G., Singh P., Singh K., Kumar B., Vij A., Kumar M., et al., Nanostructured boron nitride with high water dispersibility for boron neutron capture the-rapy, Sci. Rep., 6, 35535, 2016.
  • [42] Oliver W. C., Pharr G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564-1583, 1992.
  • [43] Tan E. P. S., Lim C. T., Mechanical characterization of nanofibers-a review, Compos. Sci. Technol., 66, 1102-1111, 2006.
  • [44] Hussainova I., Hamed E., Jasiuk I., Nanoindentation testing and modeling of chromium-carbide-based com-posites, Mech. Compos. Mater., 46, 667-678, 2011.
  • [45] Wimmer R., Lucas B. N., Oliver W. C., Tsui T. Y., Lon-gitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation tech-nique, Wood Sci. Technol., 31, 131-141, 1997.
  • [46] Qi X., Yang L., Zhu J., Hou Y., Yang M., Stiffer but more healable exponential layered assemblies with boron nitride nanoplatelets, ACS Nano, 10, 9434-9445, 2016.
  • [47] Sreedhara M. B., Barua M., Chaturvedi A., Rao C. N. R., Ramamurty U., Borocarbonitride,(BN)X(C)1-X, nanosheet-reinforced polymer nanocomposites for high mechanical performance, Carbon, 140, 688-695, 2018.
  • [48] Duan Z. Q., Liu Y. T., Xie X. M., Ye X. Y., A simple and green route to transparent boron nitride/PVA na-nocomposites with significantly improved mechanical and thermal properties, Chin. Chem. Lett., 24, 17-19, 2013.
  • [49] Dai L., Long Z., Ren X., Deng H., He H., Liu W., Elect-rospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers, J. Appl. Polym. Sci., 131, 2014.
  • [50] Ma P., Wang X., Xu W., Cao G., Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics, J. Appl. Polym. Sci., 114, 2887-2892, 2009.