Boron in arid zone agriculture: Israeli case studies

Boron in arid zone agriculture: Israeli case studies

Relatively high levels of boron (B) can be found in soils and irrigation water used for agriculture in semi-arid and arid regions. Furthermore, climatic conditions and resulting high levels of plant transpiration in dry regions intensify B uptake and accumulation in plants and increase the probability of B toxicity. The focus of this review is on B interactions with soils and plants in dry regions. A basic introduction to B in soils and solutions and to B in the soil-water-plant continuum is presented to provide the reader with sufficient background to understand issues of B in arid and semi-arid agriculture. Crops in arid areas are prone to exposure to stress-causing factors from excess B that occurs simultaneously with general salinity stress. In some cases in arid zone agriculture excess B is a result of native soil-born B, in other cases it is a result of B introduced with irrigation water. Both native and introduced B can have long-term consequences on crop growth and agricultural management. The nature of excess B-salinity interactions is also reviewed. Case studies representing two scenarios regarding excess B in arid agriculture are presented. In the first, naturally occurring B in vineyards in the Jordan Valley led to toxicity, even after years of leaching and irrigation with low-B water. In the second, saline water with high B concentration historically utilized in the western Negev for irrigation of cotton had serious repercussions on subsequent peanut crops. Crop and water management options appropriate to anticipated conditions of high B in arid agriculture are presented and discussed.

___

  • Goldberg S., Reaction of boron with soil, Plant Soil., , 35-48 1997.
  • Stangoulis J. C. R., Reid R. J., Boron toxicity in plant and animals, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Academic Publish- ers, New York, USA, 227- 241, 2002.
  • Yau S. K., Ryan J., Boron toxicity tolerance in crops: A viable alternative to soil amelioration, Crop Sci., 48, 865, 2008.
  • Reid R., Can we really increase yields by making crop plants tolerant to boron toxicity?, Plant Sci., 178 (1), 11, 2010.
  • Power P., Woods G. W., The chemistry of boron and its speciation in plants, Plant Soil., 198, 1-13, 1997.
  • Hunt C. D., Boron-binding-biomolecules: A key to un- derstanding the beneficial physiologic effects of dietary born from prokaryotes to humans, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wemmer, P.H. Brown, M. Thellier, and R.W. Bell, eds) Kluwer Academic, New York, USA, pp. 21-36. Morgan V., Geochemistry, In: Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Chemistry, vol. Part A: Boron-Oxygen Com- pounds, Longman, New York, 1980.
  • EPA, Health and environmental effects document for boron and boron compounds, U.S. Environmental Pro- tection Agency, Washington, D.C. EPA 6008-91015,
  • Bassett R. L., The geochemistry of boron in thermal water, Ph.D. thesis, Stanford University, Stanford Ca- lif., 1976.
  • Elrashidi M. A., O'Connor G.A., Boron sorption and de- sorption in soils, Soil Sci. Soc. Am. J., 46, 27-31, 1982.
  • Keren R., Mezuman U., Boron adsorption by clay min- erals using a phenomenological equation, Clays Clay Miner., 29, 198-203, 1981.
  • Couch E. L., Grim R.E., Boron fixation by illites, Clays Clay Miner., 16, 249-256, 1968.
  • Sims J. R., Bingham E. T., Retention of boron by layer silicates, sesquioxides, and soil materials: II. Sesqui- oxides, Soil Sci. Soc. Am. Proc., 32, 364-369, 1968.
  • Goldberg S., Glaubing R. A., Boron adsorption on alu- minium and iron oxide minerals, Soil Sci. Soc. Am. J. :1374-1379, 1985.
  • Rhoades J. D., Ingvalson R. D., Hatcher J. T., Adsorp- tion of boron by ferromagnesian minerals and magne- sium hydroxide, Soil Sci. Soc. Am. Proc., 34, 938-941, Gu B., Lowe L. E., Studies on the adsorption of boron on humic acids, Can. J. Soil Sci., 70, 305-311, 1990.
  • Lemarchand E., Schott J., Gaillardet J., Boron isotopic fractionation related to boron sorption on humic and the atructure of surface complexes formed, Geochimi- ca et Cosmochimica Acta, 69, 3519-3533, 2005.
  • Yermiyahu U., Keren R., Chen Y., Boron sorption on Nable R. O., Banuelos G. S., Paull J. G., Boron toxicity, Plant Soil., 198, 181-198, 1997. compost organic matter, Soil Sci. Soc. Am. J., 52, 1313, 1988.
  • Sartaj M., Fernandes L., Adsorption of boron from landfill leachate by peat and the effect of environmen- tal factors, J. Environ. Eng. Sci., 4, 19-28, 2005.
  • Garat A., Meyer B., A study of different manures and their relationship with boron, Agrochimica, 27, 531438,
  • Hue N.V., Hirunburana N., Fox R.L., Boron status of Hawaiian soils as measured by B sorption and plant uptake, Commun. Soil Sci. Plant Anal., 19, 517528,
  • Mascarenhas H. A. A., Miranda M. A. C. D., Bataglia O. C., Pereira J.C.V.N.A., Tanaka R.T., Boron deficiency in soybeans, Bragantia 47, 325332, 1988.
  • Liu Z., Zhu Q., Tang L., Regularities of content and dis- tribution of boron in soils, Acta Pedologica Sinica, 26, , 1989.
  • Valk G. G. M. van der, Bruin P. N. A., Nutrition of tu- lips on fresh soil, Boron application limits early losses, Bloembollencultuur, 100, 4445, 1989.
  • Berger K. C., Pratt P.F., Advances in secondary and micro-nutrient fertilization, In: Fertilizer technology and used (M.H. McVickar G.L. Bridger, and L.B. Nelson, eds.), Soil Sci. Soc. Am. ASA, Madison, WI, pp. 281- , 1963.
  • Yermiyahu U., Keren R., Chen Y., Boron sorption by soil in the presence of composted organic matter, Soil Sci. Soc. Am. J., 59, 405-409, 1995.
  • Yermiyahu U., Keren R., Chen Y., Effect of compost or- ganic matter on boron uptake by plants, Soil Sci. Soc. Am. J., 65, 1436-1441, 2001.
  • Blagojevic S., Zarkovic B., Influence of longterm fertil- ization on the content of available iron and microele- ments in a calcareous chernozem soil, Zbornik Rado- va Poljoprivrednog Fakulteta, Univerzitet u Beogradu, , 2534, 1990.
  • Pakrashi A. C., Haldar M., Effect of moisture regime and organic matter application on the changes in hws B an acid soil of terai region of North Bengal, Environ. Ecology., 10, 292296, 1992.
  • Vaughan P. J., Shouse P. J., Goldberg S., Suarez D. L., Ayars J.E., Boron transport within an agricultural field: Uniform flow versus mobile-immobile water model sim- ulations, Soil Sci., 169, 401-412, 2004.
  • Shouse P.J., Goldberg S., Skaggs T.H., Soppe W.O., Ayars J.E., Effect of shallow groundwater manage- ment on the spatial and temporal variability of boron and salinity in an irrigation field, Vadose Zone J., 5, 390, 2006.
  • Communar G., Keren R., Effect of transient irrigation on boron transport in soils, Soil Sci. Soc. Am. J., 71, 313, 2007.
  • Ben-Gal A., Shani U., Effect of excess boron on to- matoes under water stress, Plant Soil, 256, 179-186, Tripler E., Medjool date palm tissue culture under com- bined excess of boron and salinity stress, MS thesis, Hebrew University of Jerusalem, Rechovot, Israel, (Hebrew), 2004.
  • Tripler E., Ben-Gal A., Shani U., Consequence of sa- linity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix Dactylifera L., cv. Medjool), Plant Soil., 297, 147-155, 2007.
  • Dell B., Huang L., Physiological response of plants to low boron, Plant Soil, 193, 103-120, 1997.
  • Parr A.J., Loughman B.C., Boron and membrane func- tion in plants, (D.A. Robb and W.S. Pierpoint, eds), Academic Press, New York, pp 87-107, 1983.
  • Lukaszewski K. M., Blevins D.G., Root growth inhibi- tion in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism, Plant Physiol., 112, 1135-1140, 1996.
  • Marschner H., Mineral Nutrition of Higher Plants., Aca- demic Press, SAN Diego, USA, pp 379-396, 1995.
  • Hu H., Brown P.H., Absorption of boron by plant roots, Goldberg S., Corwin D. L., Shouse P. J., Suarez D.L., Prediction of boron adsorption by field samples of di- verse textures, Soil Sci. Soc. Am. J., 69, 1379-1388,
  • Mezuman U., Keren R., Boron adsorption by soils us- ing a phenomenological adsorption equation, Soil Sci. Soc. Am. J., 45, 722-726, 1981.
  • Communar G., Keren R., Rate-limited boron transport in soils: Effect of soil texture and solution pH, Soil Sci. Soc. Am. J., 70, 882-892, 2006.
  • Communar G., Keren R., Equilibrium and nonequilib- rium transport of boron in soil, Soil Sci. Soc. Am. J., 69, 317, 2005.
  • Shani U., Dudley L. M., Hanks R. J., Model of boron movement in soils, Soil Sci. Soc. Am. J., 56, 1365- , 1992.
  • Goldberg S., Lesch S. M., Suarez D.L., Predicting bo- ron adsorption by soils using chemical parameters in the constant capacity model, Soil Sci. Soc. Am. J., 64, 1363, 2000. Plant Soil., 193, 49-58, 1997.
  • Biela A., Grote K., Otto B., Hoth S., Hedrich R., Kalden- hoff R., The Nicotiana tabacum plasma membrane aquaporins in NtAQP1 is mercury-insensitive and per- meable for glycerol, Plant J., 18, 565-570, 1999.
  • Gerbeau P., Güclü J., Ripoche P., Maurel C., Aqua- porin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solu- tion, Plant J. 18, 577-587, 1999.
  • Dordas C., Chrispeels M. J., Brown P.H., Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots, Plant Physiol., 124, 1349-1361, 2000.
  • Bastías E. I., Fernández-García N., Carvajal M., Aqua- porin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity, Plant Biol., , 415-421, 2004.
  • Reid R. J., Understanding the boron transport network in plants, Plant Soil., 385, 1-13, 2014.
  • Brown P. H., Shelp B. J., Boron mobility in plants, Plant Soil., 193, 85-101, 1997.
  • Miwa K., Fujiwara T., Boron transport in plants: Co- ordinated regulation of transporters, Annals of Botany, (7), 1103-1108, 2010.
  • Reid R. J., Hayes J. E., Posti A., Stangoulis J. C. R., Graham R.D., A critical analysis of the causes of bo- ron toxicity in plants, Plant, Cell Envir., 27, 1405-1414,
  • Brown P.H., Hu H., Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol- rich species, Ann. Bot., 77, 497-505, 1996.
  • Reid R. J., Boron toxicity and tolerance in crop plants, In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions, Springer, New York, pp 333-346, Eaton F. M., Blair G.Y., Accumulation of boron by re- ciprocally grafted plants, Plant Physiol., 10, 411-424, Nable R.O., Resistance to boron toxicity amongst sev- eral barley and wheat cultivars: A preliminary exami- nation of the resistance mechanism, Plant Soil., 112, 57, 1988.
  • Ben-Gal A., The contribution of foliar exposure to bo- ron toxicity, J. Plant Nutr., In press, 2007.
  • Maldonado J. M., Navarro-Gochicoa M. T., Role of bo- ron in vascular plants and response mechanisms to boron stresses, Plant Stress, 4 (2), 115-122 2010.
  • Loomis W. D., Durst R. W., Chemistry and biology of boron, Biofactors 3 (4), 229-239, 1992.
  • Wimmer M. A., Mühling K. H., Läuchli A., Brown P. H., Goldbach H. E., Boron toxicity: The importance of soluble boron, pp. 241- 253, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Aca- demic Publishers, New York, USA, 2002. ssp. globulus and E. grandis W. Hill to excess boron and sodium chloride, Plant Soil, 208, 251-257, 1999.
  • Wimmer M. A., Muhling K.H., Läuchli A., Brown P.H., Goldbach H.E., The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves, Plant, Cell Environ., 26, 1274, 2003.
  • Picchioni G. A., Karaca H., Boyse L. G., McCaslin B. D., Herrera E. A., Salinity, boron, and irrigated pecan productivity along New Mexico's Rio Grande Basin, J. Environ. Qual., 29, 955-963, 2000.
  • Nicholaichuk W., Leyshon A. J., Jame Y. W., Campbell C. A., Boron and salinity survey of irrigation projects and the boron adsorption characteristics of some Sas- katchewan soils, Can. J. of Soil Sci, 68, 77-90, 1988.
  • Feigin A., Ravina I., Shalhevet J., Irrigation with Treat- ed Sewage Effluent, Springer Verlag, New York, 1991.
  • Keren R., O'Connor G. A., Effect of exchangeable ions and ionic strength on boron adsorption by montmoril- lonite and illite, Clays Clay Miner., 30, 341-346, 1982.
  • Kemp P. H., The Chemistry of borates (Part 1), Borax Consolidated Ltd., London, 90 pp., 1956.
  • Bernstein L., Effects of salinity and sodicity on plant growth, Ann. Rev. Phytopath., 13, 295-312, 1975.
  • Munns R., Termaat A., Whole-plant responses to salin- ity, Aust. J. Plant Physiol., 13,143-160, 1986.
  • Bingham F. T., Strong J. E., Rhoades J.D., Keren R., Effect of salinity and varying boron concentration on boron uptake and growth of wheat.,Plant Soil, 97, 345- , 1987.
  • Mikkelsen R. L., Haghnia G. H., Page A. L., Bingham F.T., The influence of selenium, salinity, and boron on alfalfa tissue composition and yield, J. Environ. Qual., , 85-88, 1988.
  • Grattan S.R., Shannon M.C., Grieve C.M., Poss J.A., Suarez D., Leland F., Interaction effects of salinity and boron on the performance and water use Eucalyptus, Acta Hort., 449, 607-613, 1997.
  • Holloway R. E., Alston M., The effects of salt and boron on growth of wheat, Aust. J. Agric. Res, 43, 987-1001,
  • Grieve C. M., Poss J. A., Wheat response to interactive effects of boron and salinity, J. Plant Nutr, 23, 1217- , 2000.
  • Alpaslan M., Gunes A., Interactive effects of boron and salinity stress on the growth, membrane permeabil- ity and mineral composition of tomato and cucumber plants, Plant Soil, 236, 123-128, 2001.
  • Ben-Gal A., Shani U., Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress, Plant Soil., 247, 211-221, 2002.
  • Yadav H. D., Yadav O. P., Dhankar O. P., Oswal M. C., Effect of chloride salinity and boron on germination, growth, and mineral composition of chickpea (Cicer arietinum L.), Annals of Arid Zone., 28, 63-67, 1989. toxicity and drought, Zemdirbyste-Agriculture, 102 (2), 216, 2015.
  • Marcar N. E., Guo J., Crawford D.F., Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. Yermiyahu U., Ben-Gal A., Sarig P., Zippilevitch E., Bo- ron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects, J. of Hortic. Sci. and Biotech., 82, 547-554, 2007.
  • Yermiyahu U., Ben-Gal A., Keren R., Reid R. J., Com- bined effect of salinity and excess boron on plant growth and yield, Plant Soil., 304, 73-87, 2008.
  • Masood S., Wimmer M. A., Witzel K., Zörb C., Mühling K.H., Interactive effects of high boron and NaCl stress- es on subcellular localization of chloride and boron in wheat leaves, J. Agro. Crop Sci., 198, 227-235, 2012.
  • Wimmer M. A., Goldbach H. E., Boron-and-salt inter- actions in wheat are affected by boron supply, J. plant nutria and soil sci., 175 (2), 171-179, 2012.
  • Bastía E., Alcaraz-López C., Bonilla I., Martínez- Ballesta M. C., Bolaños L., Carvajal M., Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium, J. Plant Physiol., 167 (1), 60, 2010. del Carmen Rodríguez-Hernández M., Moreno D.A.,
  • Carvajal M., Ballesta M. D. C. M., Interactive effects of boron and NaCl stress on water and nutrient transport in two broccoli cultivar,. Functional Plant Biol., 40 (7), 748, 2013.
  • Grieve C. M., Poss J. A., Grattan S. R., Suarez D. L., Smith T. T., The combined effects of salinity and ex- cess boron on mineral ion relations in broccoli, Sci. Hort., 125, 178-187, 2010.
  • Smith T. E, Grattan S. R., Grieve C. M., Poss J. A. Suarez D. L. Salinity's influence on boron toxicity in broccoli, I: Impacts on yield, biomass distribution, and water use, Agric. Water Mgmt., 97, 777-782, 2010
  • Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Suarez D. L., Salinity's influence on boron toxicity in broccoli, II: Impacts on boron uptake, uptake mecha- nisms and tissue ion relations, Agric. Water Mgmt., 97, -791, 2010.
  • Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Läuchli A. E., Suarez D. L., pH dependent salinity-bo- ron interactions impact yield, biomass, evapotranspira- tion and boron uptake in broccoli (Brassica oleracea L.), Plant soil, 370 (1-2), 541-554, 2013.
  • Dan J., Gerson R., Koyumdjisky H., Yaalon D., Aridic Soils of Israel; Properties, Genesis and Management, Special Publication No. 190 Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, Yermiyahu U., Ben-Gal A., Sarig P., Boron toxicity in grapevines, Hort Sci., 41,1698-1703, 2006.
  • Maas E. V., Crop salt tolerance, pp. 262-304, In: Agri- cultural Salinity Assessment and Management, (Tanji, ed.) ASCE Manuals and Reports on Engineering No , ASCE, New York, 1990.