Synthesis and characterization of Multi-Functional Material MoBP3O12

New metal borophosphate compound MoBP3O12, as a potential candidate of nonlinear optical material, was obtained by hydrothermal method. The title compound was synthesized from the mixture of MoO3, B2O3, and (NH4)2HPO4 with the molar ratio 1:0.5:3, by heating at 200 °C for 3 days. The powder X-ray diffraction data was indexed in tetragonal system with the refined unit cell parameters, a = b = 5.302 (8), c = 21.538 (4) Å and Z = 1. Stoichiometric chemical analysis of molybdenum was done by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and boron content was analysed by spectrophotometric azomethine H method. The indexed powder X-ray diffraction (XRD) data with POWD program, fourier transform infrared spectroscopy (FTIR) spectrum and thermal analysis of MoBP3O12 are also given in the paper.

___

  • [1] Becker P., Borate materials in nonlinear optics, Adv. Mater., 10, 979‒992, 1998.
  • [2] Chen C., Lin Z., Wang Z., The development of new borate-based UV nonlinear optical crystals, Appl. Phys. B, 80, 1‒25, 2005.
  • [3] Aka G., Brenier A., Self-frequency conversion in non-linear laser crystals, Optic Mater., 22, 89‒94, 2003.
  • [4] Chen C., Wu Y., Li R., Growth of large Mo18O52 single crystals by a vapor phase method, J. Crys. Growth, 99, 708‒715, 1990.
  • [5] Fan T. Y., Huang C. E., Hu B. Q., Eckhardt R. C., Fan Y. X., Bayer R. L., Feigelson R. S., Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4, Appl. Optics, 26, 2391‒2394, 1987.
  • [6] Harrison W. T. A., Gier T. E., Stucky G. D., The synthesis and Ab initio structure determination of Zn4O(BO3)2, a microporous, zinc borate constructed of “sused” subunits, of three- and five-membered rings, Ange. Chem. Inter. Ed., 32, 724‒761, 1993.
  • [7] Wells A. F., Structural Inorganic Chemistry, 4th ed. Oxford University Press, Oxford, 1975.
  • [8] Bell R. J., Carnevale A., A structural model for B2O3 glass, Philos. Mag. B, 43, 389‒413, 1981.
  • [9] Rulmont A., Almou M., Vibrational spectra of metaborates with infinite chain structure: LiBO2, CaB2O4, SrB2O4, Spectrochim. Acta Part A, 45, 603‒610, 1989.
  • [10] Kniep R., Engelhardt H., Hauf C., A first approach to borophosphate structural chemistry, Chem. Mater., 10, 2930‒2934, 1998.
  • [11] Levesseur A., Olazcuaga R., Kbala M., Zahir M., Hagenmuller P., Couzi M., Etudes electrique et Raman des verres des systemes B2O3·M2O·M3PO4 (M=Li, Na), Solid State Ion., 2, 205‒213, 1981.
  • [12] Shi Y., Liang J. K., Zhang H., Liu Q. L., Chen X. L., Yang J. L., Zhuang W. D. et al., Crystal structure and thermal decomposition studies of barium borophosphate, BaBPO5, J. Solid State Chem., 135, 43‒51, 1998.
  • [13] Goetzman K., Karlheinz D., Dieter H. N., Ralfh G., Patent CA C09K015, 1996.
  • [14] Bulur E., Goeksu H. Y., Wieser A., Figel M., Oezer A. M., Thermoluminescent properties of fluorescent materials used in commercial lamps, Rad. Pro. Dosi., 65, 373‒379, 1996.
  • [15] Tanabe R., Sugimato N., Ho S., Manabe T., Patent CA Section 57 (Ceramics) CODEN: JKXXXAF, ICS: C03C008-08; C03C008-14, 95-274456, 23 Oct., 1995.
  • [16] Kniep R., Gozel G., Eisenmann B., Rohr C., Asbrand M., Kızılyallı M., Borophosphate - Eine stiefmütterlich behandelte verbindungsklasse: Die kristallstrukturen von MII[BPO5] (MII=Ca, Sr) und Ba3[BP3O12], Ange. Chem. Inter. Ed., 33, 749‒750, 1994.
  • [17] Hauf C., Friedrich T., Kniep R., Crystal structure of pentasodium catena-(diborato-triphosphate), Na5[B2P3O13], Crys. Mater., 210, 446-451, 1995.
  • [18] Petkova P., Boubaker K., Vasilev P., Mustafa M., Yumak A., Touihri H., Soltani M.T., Infrared Spectroscopy of Undoped and Cu-doped (80-x)Sb2O3-20Li(2)O-xMoO(3) Glasses, AIP Conference Proceedings, 1727, 0217, 2016.
  • [19] Zhu C., Wang J., Ren X., Zhang Y., Liu S., Shen J., Yue Y., Sintering temperature and atmosphere modulated evolution of structure and luminescence of 2CaO–P2O5–B2O3: Eu phosphors, J. Lum., 145, 110–113, 2014.
  • [20] Byrappa K., Progress in Crystal Growth and Characterization of Materials, Pergamon Press, Frankfurt, 1991.
  • [21] Franson M. A. H., Standard Methods for Examination of Water and Waste Water. American Publication Health Associations, the USA, 1995.
  • [22] Capelle R., Microdosage colorimétrique du bore en milieu aqueux, au moyen de réactifs a groupement azol̂que ou imine dérivés des acides h et k, Anal. Chim. Acta, 24, 555‒572, 1961.
  • [23] Zaijun L., Yuling Y., Jiaomai P., Jan T., 1-(2-hydroxy-3-methoxybenzylideneamino)- 8-hydroxynaphthalene-3,6-disulfonic acid as a reagent for the spectrophotometric determination of boron in ceramic materials, Analyst, 126, 1160‒1163, 2001.
  • [24] Wu E., POWD, an interactive program for powder diffraction data interpretation and indexing, J Appl. Crys., 22, 506‒510, 1989.
  • [25] Baykal A., Kızılyallı M., X-ray powder diffraction and IR study of NaMg(H2O)2[BP2O8]·H2O and NH4Mg(H2O)2[BP2O8]·H2O, Mater. Sci., 35, 4621‒4626, 2000.
  • [26] Gozel G., Kızılyallı M., Kniep R., Characterization of a new calcium ultraphosphate, Ca3(P5O14)2, J Solid State Chem., 129, 196‒199, 1997.
  • [27] Gozel G., Baykal A., Kızılyallı M., Kniep R., Solid-state synthesis, X-ray powder investigation and IR study of α-Mg3[BPO7], J Europ. Ceram. Soc., 18, 2241‒2246, 1998.