Effects of polyelectrolytes on the hardness of borax decahydrate crystals

The hardness of borax decahydrate crystals was measured using cationic polyelectrolytes of FO4115, FO4400 and FO4990 with anionic polyelectrolytes of AN923, AN930 and AN999 as an additive. The measurements were carried out in the indentation load range of 10 g to 30 g. It was determined that the Vickers hardness (HV) decreased with increasing applied load, showing that the borax decahydrate crystals exhibited an indentation size effect. Vickers microhardness measurements revealed that pure borax decahydrate crystals had a brittle structure, yet the crystals obtained in additive media were categorized as a soft material. The proportional specimen resistance model was applied to determine the load-independent microhardness. The crystal hardness of borax decahydrate was found to change depending on the type and concentration of polyelectrolyte used. In addition to the mechanical properties, the thermal and physical characteristics of borax decahydrate crystals were investigated by thermogravimetric and Fourier transform infrared spectroscopy analysis. The characterization results confirmed that the polyelectrolytes were adsorbed on the crystal’s surface.

___

  • [1] McMillian P. W., Glass-Ceramics, 2nd edition, Academic Press, New York, 1979.
  • [2] Ceyhan A. A., Sahin Ö., Bulutcu, A. N., Crystallization kinetics of the borax decahydrate, J. Cryst. Growth, 300 (2), 440–447, 2007.
  • [3] Gurbuz H., Ozdemir B., Experimental determination of the metastable zone width of borax decahydrate by ultrasonic velocity measurement, J. Cryst. Growth, 252 (1-3), 343–349, 2003.
  • [4] Mannepalli S., Mangalampalli K. S. R. N., Indentation plasticity and fracture studies of organic crystals, Crystals, 7, 324, 2017.
  • [5] Dieter G. E., Mechanical Metallurgy, Mc Graw Hill, New York, 1961.
  • [6] Suresh S., Techniques and tools used for investigating the grown crystals: Review, Latin-American Phys. Educ., 6 (4), 547-558, 2012.
  • [7] Tian Y., Xu B., Zhao Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater., 33, 93-106, 2012.
  • [8] Verma A. K., Ojha C., Shrivastava A. K., Effects of impurities on the hardness of alkali halide single crystals, AIP Conf. Proc., 1591, 1242, 2014.
  • [9] Tavakoli M. H., Abasi T. A., Ali E. H., Growth of KCl crystal by Czochralski method and influence of nanodiamond impurity on its hardness and optical properties, Cryst. Res. Technol., 48 (3), 130-137, 2013.
  • [10] Kishi T., Suzuki R., Shigemoto C., Murata H., Kojima K., Tachibana M., Microindentation hardness of proteins crystals under controlled relative humidity, Crystals, 7 (11), 339, 2017.
  • [11] Amala B. M., Bindhu M. R., Studies on the effect of sodium chloride on ammonium dihydrogen phosphate single crystals, IJERT, 4 (9), 315-318, 2017.
  • [12] Ding S., Zhang Q., Liu W., Luo J., Sun G., Sun D., Crystal growth, defects, mechanical, thermal and optical properties of Tb3Sc2Al3O12 magneto-optical crystal, J. Cryst. Growth, 483,110-114, 2018.
  • [13] Meyer E., Contribution to the knowledge of hardness and hardness testing, Z. ver, Dtsch. Ing. 52, 645–654, 1908.
  • [14] Onitsch E. M., Micro-hardness testing, Mikroscopia. 2, 131–151, 1947.
  • [15] Hanneman M., Metall. Manchu. 23, 135, 1941.
  • [16] Goel N., Sinha N., Kumar B., Growth and properties of sodium tetraborate decahydrate single crystals, Mater. Res. Bull. 48 (4), 1632–1636, 2013.
  • [17] Guo J., Chen, X., Zhang Y., Improving the mechanical and electrical properties of ceramizable silicone rubber/halloysite composites and their ceramic residues by incorporation of different borates, Polymers, 10 (4), 388, 2018.