Çinko-Triflat Katalizörü Kullanılarak Farklı Sübstitüe Izokumarin Türevlerinin Sentezi

Geniş bir doğal bileşik sınıfı oluşturan kumarinler, 19. yüzyıldan günümüze değin oldukça ilgi çeken ve çok sayıda pratik uygulamaya sahip olan organik bileşiklerdir. Kumarin bileşikleri, endüstride ve birçok ticari ilacın yapısında bulunan heterosiklik bileşikler olup, bu çalışmada izokumarinlerin sentezleri için farklı bir yöntem izlenerek metil 2-(feniletil) benzoat (1a-g) ve but-3-en-2-one (2)’nin çinko-triflat-katalizli tandem reaksiyonları gerçekleştirilmiştir. Söz konusu yöntemde, yüksek verimli ve çevre dostu bir reaksiyon oksijensiz ortamda gerçekleştirilmiş ve yeni bir katalizör kullanılarak hedeflenen izokumarin türevleri tek basamakta sentezlenmiştir. Diğer taraftan, elektron çekici ve elektron verici yan grupların reaksiyon oluşumuna ve verimine olan etkileri de araştırılmıştır. Özet olarak bu çalışmada, paladyum(II)-katalizli yüksek oranda regioselektif but-3-en-2-one ile cascada reaksiyonu ile geliştirilmiştir.

Synthesis of Different Substituted Isocoumarin Derivatives Using Zinc Triflate Catalyst

Coumarins, which constitute a large class of natural compounds, are organic compounds that have attracted interest since the 19th century and have numerous practical applications. Coumarin compounds are heterocyclic compounds found in industry and in the structure of many commercial drugs. In this study, zinc-triflate-catalyzed tandem reactions of methyl 2-(phenylethyl) benzoate with but-3-en-2-one were applied for the synthesis of isocoumarins by a different method. The reaction was carried out under oxygen-free conditions using a convenient and environmentally benign reaction method in high yields and synthesized the targeted isoquamarine derivatives in a single step with the help of a novel catalyst. In addition, the effect of electron-withdrawing-electron-donating side groups on the formation and percentage yield of the reaction was investigated in this study. In summary, in this study, cascada reaction with palladium (II)-catalyzed highly regioselective but-3-en-2-one was developed.

___

  • Ackermann L, Pospech J, Graczyk K, Rauch K. 2012. Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C–H/O–H bond cleavages. Org Lett, 14: 930-933.
  • Chinnagolla RK, Jeganmohan M. 2012. Regioselective synthesis of isocoumarins by ruthenium-catalyzed aerobic oxidative cyclization of aromatic acids with alkynes. Chem Commun, 48: 2030-2032.
  • Custar DW, Le H, Morken JP. 2010. Pd-catalyzed carbonylative conjugate addition of dialkylzinc reagents to unsaturated carbonyls. Org Lett, 12: 3760-3763.
  • Engelmeier D, Hadacek F, Hofer O, Lutz-Kutschera G, Lutz-Kutschera M, Nagl M, Wurz G, Greger, H. 2004. Antifungal 3-Butylisocoumarins from Asteraceae-Anthemideae. J Nat Prod, 67: 19-25.
  • Guo XX. 2013. Synthesis of isocoumarin derivatives by copper-catalyzed addition of o-halobenzoic acids to active internal alkynes. J Org Chem, 78: 1660-1664.
  • Kavala V, Wang CC, Barange DK, Kuo CW, Lei PM, Yao CF. 2012. Synthesis of isocoumarin derivatives via the copper-catalyzed tandem sequential cyclization of 2- halo-n-phenyl benzamides and acyclic 1,3-diketones. J Org Chem, 77: 5022-5029.
  • Kawano T, Agata N, Kharbanda S, Avigan D, Kufe D. 2007. A novel isocoumarin derivative induces mitotic phase arrest and apoptosis of human multiple myeloma cells, Cancer Chemother Pharmacol, 59: 329-335.
  • Larock RC, Doty MJ, Han X. 1999. Synthesis of isocoumarins and α-pyrones via palladium-catalyzed annulation of internal alkynes. J Org Chem, 64: 8770-8779.
  • Lin S, Lu X. 2010. Cationic Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to β,β-disubstituted enones: Construction of quaternary carbon centers. Org Lett, 12: 2536-2539.
  • Nishikata T, Yamamoto Y, Miyuara N. 2003. Conjugate addition of Aryl boronic acids to enones catalyzed by cationic palladium(ii)–phosphane complexes. Angew Chem Int, 42: 2768-2770.
  • Pal S, Chatare V, Pal M. 2011. Isocoumarin and its derivatives: an overview on their synthesis and applications. Curr Org Chem, 15: 782-800.
  • Patır S, Uludağ N. 2009. A novel synthetic route for the total synthesis of (±)-uleine. Tetrahedron, 65: 115-118.
  • Shimizu M, Hirano K, Satoh T, Miura, M. 2009. Waste-free synthesis of condensed heterocyclic compounds by rhodium-catalyzed oxidative coupling of substituted arene or heteroarene carboxylic acids with alkynes J Org Chem, 74: 3478-3483.
  • Suman K, Rao KP, Anuradha V, Rao MVB, Pal M. 2018. Ultrasound assisted syn- thesis of 3,4-diyne substituted isocoumarin derivatives: identification of potential cytotoxic agents, Mini-Rev Med Chem, 18: 1064-1070.
  • Ueura K, Satoh T, Miura M. 2007. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes via regioselective C−H bond cleavage. Org Chem,72: 5362-5367.
  • Ueura T, Satoh T, Miura M. 2007. An afficient waste-free oxidative coupling via regioselective C−H bond cleavage:  Rh/Cu-catalyzed reaction of benzoic acids with alkynes and acrylates under A. Org Lett, 9: 1407-1407.
  • Uludag N, Serdaroğlu G. 2018. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV–Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure. J Mol Strct, 1155: 548-560.
  • Uludag N. 2022. A simple and efficient acylation reaction over zinc triflate as a new catalyst Eur J Sci Technol, 35: 295-298.
  • Whyte AC, Gloer JB, Scott JA, Mallock D. 1996. Cercophorins A-C: novel antifungal and cytotoxic metabolites from the coprophilous fungus cercophora areolata. J Nat Prod, 59: 765-769.
  • Yoshikawa M, Harada E, Naitoh Y, Inoue K, Matsuda H, Yamahara, HJ, Murakami N. 1994. Development of bioactive functions in hydrangeae dulcis folium. III. On the antiallergic and antimicrobial principles of hydrangeae dulcis folium. (1). Thunberginols A, B, and F. Chem Pharm Bull, 42: 2225-2230.
  • Zeni G, Larock RC. 2004. Synthesis of heterocycles via palladium π-olefin and π-alkyne. Chemistry Chem Rev, 104: 2285-2310.
  • Zhao P, Chen D, Song G, Han K, Li X. 2012. Palladium-catalyzed cascade cyclization–oxidative olefination of tert-butyl 2-alkynylbenozates. J Org Chem, 77: 1579-1584.