YERLİ PATLICAN ANAÇLARININ (Solanum melongena x Solanum aethiopicum) KÖKLENME POTANSİYELİ VE FENOTİPİK KÖK MİMARİSİ

Aşılı sebze üretiminde anaç performansını etkileyen önemli faktörlerden birisi de anaçların kök yapısı ve stres koşulları altında topraktaki kök gelişim kabiliyetidir. Bu çalışmada, anaç ıslah programı kapsamında geliştirilen türler arası patlıcan anaç adaylarının (Solanum melongena x Solanum aethiopicum) kök mimarileri ve kök kalitesini oluşturan unsurların belirlenmesi amaçlanmıştır. Geliştirilen anaç adaylarının klasik testlemeler sonucunda, Fusarium (Fusarium oxysporum f. sp. melongenae) ve Verticillium (Verticillium dahliae Kleb.) solgunluk hastalıkları ile kök-ur nematoduna (Meloidogyne incognita) dayanıklı oldukları belirlenmiştir. Patlıcan anaç adaylarının açık arazide ve kontrollü sera şartlarında (25 °C ± 1) köklenme düzeyleri araştırılmıştır. Denemede, 8 adet hibrit patlıcan anaç adayı ile 3 adet ticari hibrit anaç çeşidi (Hawk, Köksal, AGR-703) kullanılmıştır. Bitkiler, açık arazi koşullarında ve kontrollü sera şartlarında 50 gün süreyle yetiştirilmiştir. Patlıcan anaçlarının fenotipik kök mimarilerinin incelenmesi ve köklenme düzeylerinin ayrıntılı olarak belirlenmesi amacıyla WinRhizo kök analiz programı (Regent Instrument Inc. Canada) kullanılmıştır. WinRhizo programı ile yapılan kök analizi sonucunda, kök mimarilerini ortaya koyan kök parametreleri (toplam kök uzunluğu (cm), kök yüzey alanı (cm2), kök hacmi (cm3), kök kuru ağırlığı (g), ortalama kök çapı (mm), belirlenmiştir. Ayrıca; patlıcan anaçlarının köklerine ait uç, çatallanma ve kesişme sayısı değerleri de tespit edilmiştir. Toplam kök uzunluğu (cm) değerleri, 1299 cm (RS-8) ile 4322 cm (RS-6) arasında değişim göstermiştir. RS-6 anacının kök kalitesi yönünden hem sera ve hem de açık arazi koşullarında en yüksek performansı gösterdiği saptanmıştır. Anaçların köklerine ait uç sayıları bakımından değerlendirme yapıldığında; RS-6 ve RS-1 anaçları sırasıyla 22538 adet ve 21111 adet en yüksek uç sayısı değerlerine ulaşmıştır. En düşük uç sayısı değeri ise RS-7 (10269 adet) anacında belirlenmiştir. Genel olarak RS-6 ve RS-1 anaçlarının; kök ucu, kök dallanma sayısı ve kesişen kök sayıları yönünden, kontrol anaç çeşitlerden daha yüksek değerlere sahip olduğu bulunmuştur. Araştırma sonucunda; hem serada ve hem de açıkta birçok kök parametresi yönünden patlıcan anaç adaylarının ticari anaçlara göre daha iyi bir köklenme yapısına ve ticari anaç olarak kullanılabilme potansiyeline sahip oldukları tespit edilmiştir.

The Phenotypic Root Architectures and Rooting Potential of Local Eggplant Rootstocks (Solanum melongena x Solanum aethiopicum)

One of the important factors affecting rootstock performance in grafted vegetable production is root structure and ability of development under stress conditions. In this study; it is aimed to examine the root architecture of Turkish eggplant rootstock candidates (Solanum melongena x Solanum aethipicum) which are developed from the hybrid rootstock breeding program. The developed rootstock candidates were found resistant to Fusarium (Fusarium oxysporum f. sp. melongenae) and Verticillium (Verticillium dahliae Kleb.) wilt diseases and nematode (Meloidogyne incognita). Rooting levels of developed rootstock candidates were investigated in open field and controlled greenhouse (25 °C ± 1) conditions. In the experiment, 8 hybrid rootstock variety candidates and 3 commercial hybrid rootstock varieties (Hawk, Köksal, AGR-703) were used. The plants were grown for 50 days under open field and controlled greenhouse conditions. WinRhizo root analysis program (Regent Instrument Inc. Canada) was used to determine the root phenotypic architecture and rooting levels of eggplant rootstocks in detail. As a result of the root analysis with the WinRhizo program, the root parameters revealing the root architectures (total root length (cm), root surface area (cm²), root volume (cm³), root dry weight (g), average root diameter (mm) and number of tips, forks and crossing) have been examined. Total root length (cm) values ranged from 1299 cm (RS-8) to 4322 cm (RS-6). RS-6 rootstock has the highest performance in terms of root quality both in greenhouse and in open field conditions. When the rootstocks is evaluated in terms of tips; RS-6 and RS-1 rootstocks reached to highest number 22538 and 21111 respectively. The lowest number of tips was determined in RS-7 (10269) rootstock. In general, the number of root tips, forks and crossings of RS-6 and RS1 rootstocks were found to be higher than the control rootstock varieties. As a result, it has been determined that eggplant rootstock variety candidates have a better rooting structure in terms of many root parameters than the commercial rootstocks both in greenhouse and field conditions. It has been also determined that these rootstock variety candidates have potency to use as commercial rootstock. 

___

  • Ano G, Hebert Y, Prior P, Messiaen CM. 1991. A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L x Solanum melongena L. Agronomie, 11: 555-560.
  • Balkaya A. 2014. Aşılı sebze üretiminde kullanılan anaçlar. TÜRKTOB Türkiye Tohumcular Birliği Der, 3 (106): 4-7.
  • Balkaya A, Kandemir D, Sarıbaş Ş. 2015. Türkiye sebze fidesi üretimindeki son gelişmeler. TÜRKTOB Türkiye Tohumcular Birliği Derg, 4(13): 4-8.
  • Balkaya A, Sarıbaş HŞ, Erper İ, Kandemir D, Seçim A. 2018. Aşılı patlıcan üretiminde genetik kaynakların anaç ıslah programında değerlendirilmesi ve yerli hibrit anaçların geliştirilmesi. SAN-TEZ Proje No: 0832.STZ.2014.
  • Bertucci MB, Suchoff DH, Jennings KM, Monks DW, Gunter CC, Schultheis JR, Louws FJ. 2018. Comparison of root system morphology of cucurbit rootstocks for use in watermelon grafting. Hort Technol, 28(5): 629-636.
  • Bie Z, Nawaz MA, Huang Y, Lee JM, Colla G. 2017. Introduction of vegetable grafting. Vegetable Grafting: Principles and Practices. Wallingford, UK: CABI Publishing, 1-21.
  • Bletsos FA, Olympios CM. 2008. Rootstocks and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. Europ J Plant Sci Biotech, 2: 62-73.
  • Cappelli C, Stravato VM, Buonaurio R. 1995. Fusarium wilt of melon, observations in the period ‘84/’94. Colture Protette 24: 9–71.
  • Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Frontiers Plant Sci, 4: 442.
  • Craine JM. 2006. Competition for nutrients and optimal root allocation. Plant and Soil, 285: 171-185.
  • Daunay MC. 2008. Eggplant. In Vegetables II (pp. 163-220). Springer, New York, NY.
  • FAO. 2017. Food and agriculture organization of the united nations classifications and standards.
  • Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F. 2011. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128: 14-22.
  • Kakita T, Abe A, Ikeda T. 2015. Differences in root growth and permeability in the grafted combinations of dutch tomato cultivars (Starbuck and Maxifort) and Japanese cultivars (Reiyo, Receive, and Magnet). American J Plant Sci, 6: 2640.
  • Kandemir D, Sarıbaş HŞ, Balkaya A. 2016. Aşılı patlıcan üretiminde kullanılan anaçların verim ve kalite üzerine etkileri. Tarım Gündem Derg, 6(33): 24-28.
  • Khah E.M. 2005. Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L.) in the field and greenhouse. J Food Agr Environ, 3: 92-94.
  • Khah E.M, Katsoulas N, Tchamitchian M, Kittas C, 2011. Effect of grafting on eggplant leaf gas exchanges under Mediterranean greenhouse conditions. Inter J Plant Prod, 5(2): 121-133.
  • King S, Davis AR, Zhang X, Crosby K. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106-111.
  • Koevoets IT, Venema JH, Elzenga JT, Testerink C. 2016. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers Plant Sci, 1335: 1-19.
  • Koral AÖ, Türktaş M. 2018. Patlıcanda Fusarium solgunluğuna dayanıklılık ve mücadele çalışmaları. Çukurova J Agric Food Sci, 33(1): 111-124.
  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals Botany, 98: 693-713.
  • Leonardi C, Kyriacou M, Gisbert C, Oztekin GB, Mourão I, Rouphael Y. 2017. Quality of grafted vegetables. Vegetable Grafting: Principles and Practices. Eds. G. Colla, F. PérezAlfocea and D. Schwarz. CAB International, Oxfordshire, UK, 216-244.
  • Oda M. 1999. Grafting of vegetables to improve greenhouse production. Food Fertil Technol Centre Extension Bullet, 480: 1-11.
  • Oztekin GB, Giuffrida F, Tuzel Y, Leonardi C. 2009. Is the vigour of grafted tomato plants related to root characteristics. J Food, Agri Environ, 7: 364-368.
  • Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros MJ. 2015. Root traits and phenotyping strategies for plant improvement. Plants, 4: 334-355.
  • Passam HC, Stylianou M. Kotsiras A. 2005. Performance of eggplant grafted on tomato and eggplant rootstocks. Europ J Hort Sci, 70(3): 130–134.
  • Pereira-Dias L, Lopez-Serrano L, Castell-Zeising V, Lopez-Galarza S, San Bautista A, Calatayud Á, Fita A. 2018. Different root morphological responses to phosphorus supplies in grafted pepper. Bulletin UASVM Horticulture, 75: 1.
  • Schiefelbein JW, Benfey PN. 1991. The development of plant roots: new approaches to underground problems. The Plant Cell 3, 11: 1147.
  • Schwarz D, Rouphael Y, Colla G, Venema JH. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127: 162-171.
  • Suchoff DH, Gunter CC, Louws FJ. 2017. Comparative analysis of root system morphology in tomato rootstocks. Hort Technol, 27(3): 319-324.
  • TTSM, 2019. T.C. Tarım ve Orman Bakanlığı Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü. https://www.tarimorman.gov.tr/BUGEM/TTSM/Menu/30/Ka yit-Listeleri/, (erişim tarihi: 13 Şubat 2019).
  • Ulas F, Erdogdu S, Yücel Y, Ulas A, Yetisir H. 2018. Leaf physiological and root morphological responses of some fruit bearing vegetables as affected by different rates of nitrogen. Uluslararası Tarım ve Doğa Bilimleri Derg, 1: 19-24.
  • Yarşi G, Rad S. 2004. Cam serada aşılı fide kullanımının Faselis F1 patlıcan çeşidinde verim, meyve kalitesi ve bitki büyümesine etkisi. Alata Bahçe Kültürleri Araştırma Enstit Derg, 3: 16-22.
  • Yetişir H. 2017. History and current status of grafted vegetables in Turkey. Chron Horticult 57: 13-18.