Therapeutic Source: Plants

Therapeutic Source: Plants

Plants are used to cure many diseases due to their therapeutic properties. The history of phytotherapy applications, in which plants are used for treatment, goes back thousands of years. The reason why plants have been used for treatment for such a long time; they have produced secondary compounds with thousands of different structures that have therapeutic properties. Many of the secondary metabolites produced by plants have been converted into drugs by rational phytotherapeutic applications. The demand for herbal medicines is increasing day by day all over the world due to the serious side effects of synthetic drugs used in the treatment, the inability to provide sufficient efficacy and the existence of diseases that still have no cure. There are nearly 13 thousand plant taxa in our country, and very few of the plants are used for medicinal purposes. In fact, thousands of plants and tens of thousands of secondary compounds that can be used for treatment are waiting to be discovered. The discovery of new, effective and safe herbal medicines is a remarkable research area today, and the discovery of effective and safe alternative medicines will provide a great benefit for human health.

___

  • Afsheen, N., Jahan, N., Ijaz, M., Manzoor, A., Khan, K. M., & Hina, S. (2018). Cardioprotective and Metabolomic Profiling of Selected Medicinal Plants against Oxidative Stress. Oxidative medicine and cellular longevity, 2018. Arslan, N. (2016). Tibbi ve Aromatik Bitkiler. Türkiye Tohumcular Birliği Dergisi, 17(5), 66-69.
  • Avancini, G., Abreu, I. N., Saldaña, M. D., Mohamed, R. S., & Mazzafera, P. (2003). Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate. Phytochemistry, 63(2), 171-175.
  • Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life sciences, 78(5), 431-441.
  • Bailey, C. J., & Day, C. (2004). Metformin: Its botanical background. Practical Diabetes 21, 115–117.
  • Batiha, G. E. S., Alkazmi, L. M., Nadwa, E. H., Rashwan, E. K., Beshbishy, A. M., Shaheen, H., & Wasef, L. (2020). Physostigmine: A plant alkaloid isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities. Journal of Drug Delivery and Therapeutics, 10(1-s), 187-190.
  • Beppe, G. J., Dongmo, A. B., Foyet, H. S., Tsabang, N., Olteanu, Z., Cioanca, O., . . . Hritcu, L. (2014). Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC complementary and alternative medicine, 14(1), 1-11.
  • Bohlmann, J., & Keeling, C. I. (2008). Terpenoid biomaterials. The Plant Journal, 54(4), 656-669.
  • Bonfil, R.D., Russo, D.M., Binda, M.M., Delgado, F.M., Vincenti, M., 2002. Higher antitumor activity of vinflunine than vinorelbine against an orthotopic murine model of transitional cell carcinoma of the bladder. Urologic Oncology 7 (4), 159– 166.
  • Cars, O., & Nordberg, P. (2005). Antibiotic resistance–The faceless threat. International Journal of Risk & Safety in Medicine, 17(3, 4), 103-110
  • Colalto, C. (2018). What phytotherapy needs: Evidence‐based guidelines for better clinical practice. Phytotherapy research, 32(3), 413-425.
  • Coruh, N., & Ozdogan, N. (2014). Fluorescent coumarin components of the bark of Aesculus hippocastanum. Journal of Liquid Chromatography & Related Technologies, 37(10), 1334-1350.
  • Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug discovery. Scientific American, 270(6), 82-87.
  • Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of ethnopharmacology, 100(1-2), 72-79.
  • Crozier, A., Clifford, M. N., ve Ashihara, H. (2008). Plant secondary metabolites: occurrence, structure and role in the human diet: John Wiley ve Sons.
  • Dar, R. A., Shahnawaz, M., & Qazi, P. H. (2017). General overview of medicinal plants: A review. The Journal of Phytopharmacology, 6(6), 349-351.
  • Frantz, S., Smith, A., 2003. New drug approvals for 2002. Nature Reviews Drug Discovery 2 (2), 95– 96.
  • Fürst, R., ve Zündorf, I. (2015). Evidence-based phytotherapy in Europe: where do we stand. Planta Med, 81(12-13), 962-967
  • Ghosh, S., Subudhi, E., & Nayak, S. (2008). Antimicrobial assay of Stevia rebaudiana Bertoni leaf extracts against 10 pathogens. International Journal of Integrative Biology, 2(1), 27-31.
  • Gnonlonfin, G. B., Sanni, A., & Brimer, L. (2012). Review scopoletin–a coumarin phytoalexin with medicinal properties. Critical Reviews in Plant Sciences, 31(1), 47-56.
  • Governa, P., Baini, G., Borgonetti, V., Cettolin, G., Giachetti, D., Magnano, A. R., . . . Biagi, M. (2018). Phytotherapy in the management of diabetes: a review. Molecules, 23(1), 105.
  • Gurib-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular aspects of Medicine, 27(1), 1-93. Hall, M.G., Wilks, M.F., Provan, W.M., Eksborg, S., Lumholtz, B., 2001b. Pharmacokinetics and harmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)- 1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. British Journal of Clinical Pharmacology 52 (2), 169– 177. maize. Pest Management Science 57 (2), 120– 128.
  • Hamburger, M. and Hostettmann, K. (1991). Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry 30: 3864-3874.
  • Heinrich, M. (2001). Ethnobotanik und Ethnopharmazie. Eine Einführung. Stuttgart (D). In: Wissenschaftliche Verlagsgesellschaft (ISBN 2-8047-1775-6).
  • Heinrich, M., Teoh, H.L., 2004. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. Journal of Ethnopharmacology 92 (2– 3), 147– 162.
  • Heinrich, M. (2010). 3.12—Ethnopharmacology and drug discovery. Comprehensive Natural Products II. Elsevier, Oxford, 351.
  • Heinrich, M., Williamson, E. M., Gibbons, S., Barnes, J., ve Prieto-Garcia, J. (2017). Fundamentals of Pharmacognosy and Phytotherapy E-Book: Elsevier Health Sciences.
  • Hesse, M. (2002). Alkaloids: nature's curse or blessing? : John Wiley & Sons.
  • Hroboňová, K., Machyňáková, A., & Čižmárik, J. (2018). Determination of dicoumarol in Melilotus officinalis L. by using molecularly imprinted polymer solid-phase extraction coupled with high performance liquid chromatography. Journal of Chromatography A, 1539, 93-102.
  • Jachak, S. M., & Saklani, A. (2007). Challenges and opportunities in drug discovery from plants. Current science, 1251-1257.
  • Kamble, S. S., & Gacche, R. N. (2019). Evaluation of anti-breast cancer, anti-angiogenic and antioxidant properties of selected medicinal plants. European Journal of Integrative Medicine, 25, 13-19
  • Katiyar, C., Gupta, A., Kanjilal, S., & Katiyar, S. (2012). Drug discovery from plant sources: An integrated approach. Ayu, 33(1), 10.
  • Klein, J. D., Wilson, K. M., Sesselberg, T. S., Gray, N. J., Yussman, S., & West, J. (2005). Adolescents’ knowledge of and beliefs about herbs and dietary supplements: a qualitative study. Journal of Adolescent Health, 37(5), 409. e401-409. e407.
  • Kumar, S., Paul, S., Walia, Y. K., Kumar, A., & Singhal, P. (2015). Therapeutic potential of medicinal plants: a review. J. Biol. Chem. Chron, 1(1), 46-54
  • Loomis, W. D., & croteau, R. (1980). Biochemistry of terpenoids. In Lipids: structure and function. Elsevier, 363-418.
  • Maclagan T. Drug Discovery: A History. Lancet.1876; 107: 342.
  • Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223-232.
  • McCord, J. M. (2000). The evolution of free radicals and oxidative stress. The American journal of medicine, 108(8), 652-659.
  • Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K., & Wichert, R. A. (2001). Mesotrione: a new selective herbicide for use in maize. Pest Management Science: formerly Pesticide Science, 57(2), 120-128.
  • Mundy, C., Kirkpatrick, P., 2004. Tiotropium bromide. Nature Reviews Drug Discovery 3 (8), 643.
  • Nazir, R., Kumar, V., Gupta, S., Dwivedi, P., Pandey, D. K., & Dey, A. (2021). Biotechnological strategies for the sustainable production of diosgenin from Dioscorea spp. Applied Microbiology and Biotechnology, 105(2), 569-585.
  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual review of phytopathology, 30(1), 369-389.
  • Özçelik, G., ve Toprak, D. (2015). Bitkisel tedavi neden tercih ediliyor? Ankara Medical Journal, 15(2).
  • Patwardhan, B., Vaidya, A. D., & Chorghade, M. (2004). Ayurveda and natural products drug discovery. Current science, 789-799.
  • Permin, H., Norn, S., Kruse, E., & Kruse, P. R. (2016). On the history of Cinchona bark in the treatment of Malaria. Dansk Medicinhistorisk Årbog 44, 9–30.
  • Rana, S., Dixit, S., & Mittal, A. (2017). Anticancer effects of chemotherapy and nature products. Journal of Medical Discovery, 2(2), 1-8.
  • Raskin, I., Ribnicky, D., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, A., Ripoll, C., Yakoby, N., Cornwell, T., Pastor, I. And Fridlender, B. (2002) Plants and human health in the twenty-first century. Trends In Biotechnology 20 (12): 522-531.
  • Reichling, J. (2018). Plant–microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. Annual plant reviews online, 214-347.
  • Rumack, B. H. (1973). Anticholinergic poisoning: treatment with physostigmine. Pediatrics, 52(3), 449-451
  • Samuelsson, G., 2004. Drugs of Natural Origin: a Textbook of Pharmacognosy, 5th Swedish Pharmaceutical Press, Stockholm.
  • Sappington, J. (1844). The theory and treatment of fevers. St Louis, MO: J. Sappington.
  • Sarker, S. D., & Nahar, L. (2018). Evidence-based phytotherapy: what, why and how? Trends in phytochemical research, 2(3), 125-126.
  • Schulz, R. Hansel, and V. Tyler. (1998). Rational Phytotherapy: A Physician’s Guide to Herbal Medicine, Springer, Berlin, Germany.
  • Siddiqui, A. A., Iram, F., Siddiqui, S., & Sahu, K. (2014). Role of natural products in drug discovery process. Int J Drug Dev Res, 6(2), 172-204.
  • Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z., & Finley, J. W. (2012). Evolution of phenolic compounds from color and flavor problems to health benefits. Journal of Agricultural and Food Chemistry, 60(27), 6658-6677.
  • Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochemistry Reviews, 19(5), 1199-1209.
  • Travaini, M. L., Sosa, G. M., Ceccarelli, E. A., Walter, H., Cantrell, C. L., Carrillo, N. J., ... & Duke, S. O. (2016). Khellin and visnagin, furanochromones from Ammi visnaga (L.) Lam., as potential bioherbicides. Journal of agricultural and food chemistry, 64(50), 9475-9487.
  • Van Agtmael, M.A., Eggelte, T.A., van Boxtel, C.J., 1999. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends in Pharmacological Sciences 20 (5), 199– 205.
  • Verpoorte, R. (1998). Exploration of nature's chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discovery Today, 3(5), 232-238.
  • Withering, W. (2009). An account of the foxglove and some of its medicinal uses. London: J and J Robinson; 1785.
  • Yao, L. H., Jiang, Y.-M., Shi, J., Tomas-Barberan, F., Datta, N., Singanusong, R., & Chen, S. (2004). Flavonoids in food and their health benefits. Plant foods for human nutrition, 59(3), 113-122.
  • Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S.L., Lee, K.H., 2003. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Medical Research Reviews 23 (3), 322– 345.
  • Zhang, L., Song, J., Kong, L., Yuan, T., Li, W., Zhang, W., ... & Du, G. (2020). The strategies and techniques of drug discovery from natural products. Pharmacology & Therapeutics, 216, 107686.