Tuz ve kuraklığa maruz kalmış domates genomunda Lycopersicum esculentum L. DNA metilasyon seviyesinin CRED-RA tekniği ile araştırılması

Genomdaki metilsitozin seviyesi veya metilasyon oranı enzimle kesim-rastgele amplifikasyon CRED-RA tekniğininde içerisinde yer aldığı bir çok yöntem ile belirlenebilir. CRED-RA HpaII ve MspI gibi metilasyon duyarlı enzimlerin kullanıldığı önemli bir tekniktir. Bu çalışma kapsamında CRED-RA tekniği farklı zaman aralıklarında 0, 6, 9, 12 ve 24 saat 100 mM NaCl ve Plietilen glikol PEG uygulanmış domates Lycopersicum esculentum L bitkisinde DNA metilasyon değişikliklerinin belirlenmesi amacı ile kullanılmıştır. DNA band değişiklikleri Rastgele Çoğaltılmış Polimorfik DNA RAPD analizi aracılı ile ortaya konmuştur. 12 saat süre ile NaCl ve PEG uygulanmış örneklerden RAPD analizi ile elde edilen DNA bant değişikliklerinin de-metilasyon/hipometilasyon açısından kritik olduğu görülmüştür. CRED-RA analizi verilerine göre, PEG uygulamasının NaCl uygulamasına oranla domates genomundaki DNA metilasyon seviyesinde daha fazla değişikliğe sebep olduğu görülmüştür. Her iki stres koşulu içinde toplam metilasyon seviyesindeki maksimum düşüşün 9h uygulamasında olduğu belirlenmiştir. Sonuç olarak; bu çalışma ile CRED-RA tekniğinin kuraklık ve tuz gibi abiotik stres koşullarına maruz kalmış bitkilerde DNA metilasyon seviyesindeki değişikliklerin belirlenmesinde kullanılabileceği görülmüştür

New insight into evaluation of DNA methylation levels with CRED-RA technique in the genome of Lycopersicum esculentum

Levels of methylcytosine in the genome can be detected with multiple approaches from several standpoints, as there are many techniques, such as coupled restriction enzyme digestion-random amplification CRED-RA , available for determining methylation rates in the genome. CRED-RA, which is a powerful technique for studying the genome methylation status, uses methylation-sensitive enzymes, such as HpaII and MspI. In the present study, we used the CRED-RA technique to determine DNA methylation changes in Lycopersicum esculentum L. subjected to 100 mM NaCl and Polyethylene glycol PEG for different time intervals 0 h, 6 h, 9 h, 12 h, and 24 h . DNA band variations due to both stressors were revealed by Random Amplified Polymorphic DNA RAPD analysis. The DNA band changes obtained by the RAPD analysis at 12 h response to both stressors PEG and NaCl indicated that this was the critical point for demethylation/hypomethylation activity. According to the results of the CRED-RA analysis, the PEG treatment led to greater variation in DNA methylation than NaCl in the tomato genome. For both stressors, the maximum decrease in total methylation levels occurred at 9 h compared to the control plants, indicating that this is the critical point for demethylation/hypomethylation activity. In conclusion, the present study showed that DNA methylation changes can be easily observed with a straightforward technique, CRED-RA, in plants subjected to abiotic stress conditions, such as drought and salinity

___

  • V. Chinnusamy, J.K. Zhu, Epigenetic regulation of stress responses in plants, Current opinion in plant biology, 12 (2009) 133-139.
  • M. Mirouze, J. Paszkowski, Epigenetic contribution to stress adaptation in plants, Current opinion in plant biology, 14 (2011) 267- 274.
  • M.M. Suzuki, A. Bird, DNA methylation landscapes: provocative insights from epigenomics, Nature Reviews Genetics, 9 (2008) 465-476.
  • E.A. Tattersall, J. Grimplet, L. DeLuc, M.D. Wheatley, D. Vincent, C. Osborne, A. Ergül, E. Lomen, R.R. Blank, K.A. Schlauch, Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress, Functional & integrative genomics, 7 (2007) 317-333.
  • T. Kalefetoğlu, Y. Ekmekci, The effects of drought on plants and tolerance mechanisms, Gazi University Journal of Science, 18 (2010) 723-740.
  • R. Munns, Plant adaptations to salt and water stress: differences and commonalities, Adv Bot Res, 57 (2011) 1-32.
  • G. Campbell, J. Hanks, J. Ritchie, Simulation of water uptake by plant roots, Modeling plant and soil systems., (1991) 273-285.
  • E.A. Bray, Plant responses to water deficit, Trends in plant science, 2 (1997) 48-54.
  • M. Rassoulzadegan, V. Grandjean, P. Gounon, S. Vincent, I. Gillot, F. Cuzin, RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse, Nature, 441 (2006) 469-474.
  • B. Arnholdt-Schmitt, Stress-induced cell reprogramming. A role for global genome regulation?, Plant physiology, 136 (2004) 2579- 2586.
  • A. Madlung, L. Comai, The effect of stress on genome regulation and structure, Annals of Botany, 94 (2004) 481-495.
  • D. Zilberman, S. Henikoff, Genome-wide analysis of DNA methylation patterns, Development, 134 (2007) 3959-3965.
  • N. Steward, M. Ito, Y. Yamaguchi, N. Koizumi, H. Sano, Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress, Journal of Biological Chemistry, 277 (2002) 37741-37746.
  • C.S. Choi, H. Sano, Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants, Molecular Genetics and Genomics, 277 (2007) 589-600.
  • A. Kovar, B. Koukalova, M. Bezde, Z. Opatrn, Hypermethylation of tobacco heterochromatic loci in response to osmotic stress, Theoretical and Applied Genetics, 95 (1997) 301-306.
  • M. Labra, A. Ghiani, S. Citterio, S. Sgorbati, F. Sala, C. Vannini, M. Ruffini-Castiglione, M. Bracale, Analysis of cytosine methylation pattern in response to water deficit in pea root tips, Plant biology, 4 (2002) 694-699.
  • J.P. Jost, H.P. Saluz, DNA methylation: molecular biology and biological significance, Birkhauser Verlag, 1993.
  • G. Grigg, S. Clark, Genes and genomes: Sequencing 5-methylcytosine residues in genomic DNA, Bioessays, 16 (1994) 431-436.
  • T. Rein, M.L. DePamphilis, H. Zorbas, Identifying 5-methylcytosine and related modifications in DNA genomes, Nucleic acids research, 26 (1998) 2255-2264.
  • Q. Cai, C.L. Guy, G.A. Moore, Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus, Genome, 39 (1996) 235-242.
  • A. Prakash, P. Kumar, Inhibition of shoot induction by 5-azacytidine and 5-aza-2′-deoxycytidine in Petunia involves DNA hypomethylation, Plant Cell Reports, 16 (1997) 719-724.
  • D. Leljak-Levanić, N. Bauer, S. Mihaljević, S. Jelaska, Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L, Plant cell reports, 23 (2004) 120-127.
  • E. Tani, A. Polidoros, I. Nianiou-Obeidat, A. Tsaftaris, DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids, Maydica, 50 (2005) 19.
  • P.E. Verslues, M. Agarwal, S. Katiyar-Agarwal, J. Zhu, J.K. Zhu, Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status, The Plant Journal, 45 (2006) 523-539.
  • F. Lefort, M. Lally, D. Thompson, G. Douglas, Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland, Silvae Genetica, 47 (1998) 257-261.
  • S. Soydam Aydin, E. Gökçe, İ. Büyük, S. Aras, Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 746 (2012) 49-55.
  • F.A. Atienzar, M. Conradi, A.J. Evenden, A.N. Jha, M.H. Depledge, Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene, Environmental Toxicology and Chemistry, 18 (1999) 2275-2282.
  • W. Liu, P. Li, X. Qi, Q. Zhou, L. Zheng, T. Sun, Y. Yang, DNA changes in barley Hordeum vulgare seedlings induced by cadmium pollution using RAPD analysis, Chemosphere, 61 (2005) 158-167.
  • X.L. Li, Z.X. Lin, Y.C. Nie, X.P. Guo, X.L. Zhang, Methylation-sensitive amplification polymorphism of epigenetic changes in cotton under salt stress, Acta Agronomica Sinica, 35 (2009) 588-596.
  • W.S. Wang, Y.J. Pan, X.-Q. Zhao, D. Dwivedi, L.-H. Zhu, J. Ali, B.-Y. Fu, Z.-K. Li, Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.), Journal of experimental botany, 62 (2011) 1951- 1960.
  • R. Karan, T. DeLeon, H. Biradar, P.K. Subudhi, Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes, PloS one, 7 (2012) e40203.
  • G. Kalloo, Genetic Improvement of vegetable crops.In Tomato, in: G. Kallo, B.O. Bergh (Eds.), Pergamon Press, New York, 1993, pp. 645-666.
  • A. Blum, Plant Breeding for Stress Environments, CRC Press, Boca Raton, 1988.
  • E.A. Bray, J. Bailey-Serres, E. Weretilnyk, Responses to abiotic stresses, Biochemistry and molecular biology of plants, (2000) 1158-1203.
  • A. Yeo, T. Flowers, Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils, Functional Plant Biology, 13 (1986) 161-173.
  • M. Kulkarni, U. Deshpande, Comparative studies in stem anatomy and morphology in relation to drought resistance in tomato (Lycopersicon esculentum), American Journal of Plant Physiology, 1 (2006).
  • K. Nasiruddin, S. Yasmin, S. Toma, A. Crescenzi, Screening of Potato Germplasm against Abiotic Stress and Molecular Characterization by Randomly Amplified Polymorphic DNA Analysis, Meeting of the Physiology Section of the European Association for Potato Research, 684 (2004) 143-150.
  • Y. Pan, W. Wang, X. Zhao, L. Zhu, B. Fu, Z. Li, DNA methylation alterations of rice in response to cold stress, Plant Omics J, 4 (2011) 364-369.
  • S. Cerda, S. Weitzman, Influence of oxygen radical injury on DNA methylation, Mutation Research/Reviews in Mutation Research, 386 (1997) 141-152.
  • J.P. Galaud, T. Gaspar, N. Boyer, Effect of anti‐DNA methylation drugs on growth, level of methylated DNA, peroxidase activity and ethylene production of Bryonia dioica internodes, Physiologia plantarum, 87 (1993) 528-534.
  • P. Lízal, J. Relichová, The effect of day length, vernalization and DNA demethylation on the flowering time in Arabidopsis thaliana, Physiologia Plantarum, 113 (2001) 121-127.
  • M.J. Ronemus, M. Galbiati, C. Ticknor, J. Chen, S.L. Dellaporta, Demethylation-induced developmental pleiotropy in Arabidopsis, Science, 273 (1996) 654-657.
  • X. Cao, S.E. Jacobsen, Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes, Proceedings of the National Academy of Sciences, 99 (2002) 16491-16498.
  • E.J. Oakeley, J.-P. Jost, Non-symmetrical cytosine methylation in tobacco pollen DNA, Plant molecular biology, 31 (1996) 927-930.