Pyrite oxidation by using Thiobacillus ferrooxidans and Thiobacillus thiooxidans in pure and mixed cultures

Pyrite oxidation by using Thiobacillus ferrooxidans and Thiobacillus thiooxidans in pure and mixed cultures

Pyrite oxidation reaction was carried out using acidophilic microorganisms, Thiobacillus ferrooxidans and Thiobacillus thiooxidans in pure and mixed cultures of these bacteria. Bioleaching experiments in this study were carried out at 30°C and different parameters such as pH, Fe II and Fe III concentration were studied. The results showed that mixed cultures of T. ferrooxidans and T. thiooxidans enhanced the dissolution of Fe from pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Amount of sulphuric acid produced in mixed cultures of bacteria was higher than pure cultures of each bacterium. Enhancement of Fe III ions was also observed with mixed cultures of T. thiooxidans and T. ferrooxidans, while this did not occur in pure cultures of T. ferrooxidans. The presence of iron III showed a negative effect on the bacterial iron oxidation rate. In the case of pure cultures of T. ferrooxidans, pyrite was nearly completely oxidized to sulphate because of the capacity of this culture to oxidize both iron II ions and sulphuric compounds. Ferric ions competitively inhibited ferrous ion oxidation by the bacteria. Also it was observed that volatilization of Fe II from pyrite is highly pH-dependent

___

  • Appia-Ayme, C., Guiliani, N., Ratouchniak, J. and Bonnefoy, V. 1999. Characterization of an operon encoding two c- type cytochromes an aa3-type cytochrome oxidase, and rusticyanin in Acidithiobcillus ferrooxidans ATCC33020. Appl Environ Microbiol, 65:4781-4787.
  • Barreto, M., Quatrini, R., Bueno, S., Arriagada, C., Valdes, J., Silver, S., Jedlicki, E. and Holmes D. S. 2003. Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy, 71:97-105.
  • Bosecker, K. 1997. Bioleaching, metal volatilization by microorganisms. FMES Microbiology Reviews, 20: 591- 604.
  • Brassuer, G., Levican, G., Bonnefoy, V., Holmes, D., Jedlicki, E. and Lemesle- Meunier D. 2004. Apparent redundancy of electron transfer pathways via bc1complexes and terminal oxidases in the extremely acidophilic chemoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta., 1656:114-126.
  • Chen, Y. and Lin, J. 2001. Bioleaching of heavy metals from sediment: significance of pH. Chemosphere, 44: 1093 – 1102.
  • Coram, N., J. and Rawlings, D.E. 2002. Molecular relationship between two groups of Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. Dominates South African commercial biooxidation tanks which operate at 40°C. Appl Environ Microbiol, 68: 838-845.
  • Ehsani, M, R. Eghbali, F. 2007. Reduction of sulfur and Ash from Tabas Coal by Froth Flotation. Iran. J. Chem.Chem. Eng. 26: 35-40.
  • Elbehti, A., Brasseur, G. and Lemesle-Meunier, D. 2000. First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion- oxidizing bacterium Thiobacillus ferrooxidans. J Bacteriol, 182: 3602-3606.
  • Fernando, A. 2002. Present and future of bioleaching in developing countries. Electronic journal of biotechnology, 5: 196 – 199.
  • Foucher, S., Battaglia-Brunet, F., Hugues, P., Clarens, M., Godon, J, J. and Morin, D. 2003 Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column, and comparison with a mechanically-agitated reactor. Hydrometallurgy, 71: 5-12.
  • Goebel, B., M. and Stackebrandt, E. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol, 60:1614-1621.
  • Hallberg, K., B. and Lindström, E., B. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology, 140: 3451-3456.
  • Hugues, P., Cezac, P., Cabral, T., Batagelia, F. and Truony, X. M. 1997. Bioleaching of a cobaltifereous pyrite: a continuous laboratory – scale study of high solids concentration. Minerals Engineering, 10: 507 – 527.
  • Johnson, D., B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol., 27: 307-317.
  • Mouns, A., J., Gonzalez, F., and Ballester, A. 1995. A study of the bioleaching of a Spanish uranium ore. Hydrometallurgy, 38: 39 – 57.
  • Oblinger, J., L. 1975. Understanding and teaching the most probable number technique. Journal milk food technol., 38: 540- 545.
  • Ohmura, N., Sasaki, K., Matsumoto, N. and Saiki, H. 2002. Anaerobic respiration using Fe3+, S0 and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Journal of Bacteriology, 184: 2081- 2087.
  • Olson, G., J., Brierley, J., A. and Brierley, C., L. 2003. Bioleaching review partB: Progress in bioleaching: applications of the microbial processes by the mineral industries. Appl Microbiol Biotechnol., 63: 249-257.
  • Oser, B., L. 1965. Hawk's Physiological chemistry, 14th ed. New York: McGraw Hill.1094-1096.
  • Petre, A., S. 2001. Influence of bacterial culture selection on the operation of a plant treating refractory gold ore. Miner Process, 62: 217 – 229.
  • Pronk, J., T., Meulenberg, R., Hazeu, W., Bos, P. and Kuenen, J., G. 1992. Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev., 75: 293-306.
  • Rawlings, D., E. 2002. Heavy metal mining using microbes. Annu Rev Microbiol., 56:65-91.
  • Rawlings, D., E. 2005. Characteristics and adaptability of iron- and sulfur- oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4:1-13.
  • Rohwerder, T., Gehrke, T., Kinzler, K. and Sand, W. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol., 63: 239-248.
  • Schippers, A. and Sand, W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 65: 319-321.
  • Silverman, M., P. and Lundgren, D., G. 1959. Studies on the chemo-autotrophic iron bacterium ferrobacillus ferrooxidans. In: An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77: 642 – 647.
  • Sugio, T., Fujii, M., Takeuchi, F., Negishi, A., Maeda, T. and Kamimura, K. 2003. Volatilization by an iron oxidation enzyme system in a highly mercury resistant Acidithiobacillus ferrooxdians strain MON-1. Biosci Biotechnol Biochem., 67:1537-1544.
  • Tributsch, H. 2001. Direct vs indirect bioleaching. Hydrometallurgy, 59:177-185.
  • Vásquez, M. and Espejo, R., T. 1997. Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Appl Environ Microbiol, 63:332-334.
  • Wakai, S., Kikumoto, M., Kanao, T. and Kamimura, K. 2004. Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem., 68: 2519-2528.
  • Yarzábal, A., Brasseur, G., Appia-Ayme, C., Ratchouchniak, J., Lund, K., Lemesle-Meunier, D., Demoss, J., A. and Bonnefoy, V. 2002. The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol, 184: 313-317.
  • Ziloue, H., Shojaosadati, A., S., Khalilzadeh, R. and Nasernejad, B. 2003. Bioleaching of copper from low-grade oreusing isolated bacteria and defined mixed cultures. Iranian journal of biotechnology, 3: 162- 168.
Biyolojik Çeşitlilik ve Koruma-Cover
  • ISSN: 1308-5301
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Ersin YÜCEL