Pimpla turionellae L. (Hymenoptera: Ichneumonidae) Zehirinin Memeli Hücrelerindeki Potansiyel Antienflamatuvar Etkilerinin Değerlendirilmesi

Parazitik arılar sahip oldukları kompleks bir zehir karışımı ile birlikte yumurtalarını diğer böceklerin içine veya üzerine enjekte ederler. Parazitoidlerin zehirleri, genç parazitoidin büyüme gelişimini sağlamak amacıyla konak fizyolojisini değiştirecek veya bağışıklık sistemini baskılayacak şekilde iş görmektedir. Böceklerde başlıca doğal bağışıklık yolakları olan Toll/ Imd yolağının, memelilerdeki NF-kappa B (NF-κB, Nüklear Faktör kappa B) yolağına homolog olması nedeniyle, zehire bağlı olarak konak böceğin bağışıklık sisteminde oluşan tepkilerin memeli hücre sisteminde de olabileceği çalışmamızın hipotezi olarak belirlenmiştir. Bu nedenle, P. turionellae zehrinin murin fibrosarkoma L929sA hücreleri üzerindeki etkilerini belirlemek için NF-κB 'ye bağımlı bir lusiferaz aktivite testi kullanıldı. MTT testinden elde edilen sonuçlar, P. turionellae'den elde edilen zehirinin uygulanan inkübasyon sürelerinde ve konsantrasyonlarda L929sA hücre hatları üzerinde sitotoksik etkiye sahip olmadığını göstermiştir. Ayrıca, bu çalışma, endoparazitoit P. turionellae zehirinin, toksik olmayan konsantrasyonlarında memeli hücrelerindeki NF-κB sinyalini inhibe etme potansiyeline sahip olduğunu göstermiştir. Sonuç olarak, ekto- veya endoparazitoit arılardan elde edilen zehir bileşenleri, memeli hücrelerinin artan bağışıklık tepkileri üzerinde antienflamatuvar potansiyele sahiptir.

Evaluation of the Potential Anti-inflammatory Effects of Endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) venom on Mammalian Cell Lines

Parasitic wasps inject their eggs, together with a complex venom mixture, in or on other insects. Parasitoid venoms use various mechanisms to manipulate the physiology and suppress the immune system of their hosts, thus enabling the growth and development of their offspring. Since the major mechanisms of innate immunity in insects are homologous to the Nuclear Factor kappa B (NF-κB) pathway in mammalian immunity, this study hypothesized that venom related immune suppression observed in host insects could also be observed in mammalian cells. Therefore, an NF-κB-dependent luciferase assay was used to determine the effects of P. turionellae venom on murine fibrosarcoma L929sA cells. Results from an MTT assay showed that venom from P. turionellae has no cytotoxic effects on L929sA cell lines when taking into account a defined range of exposure time and concentrations. Also, the present study indicated that endoparasitoid P. turionellae venom has potential to inhibit NF-κB signaling in cells of mammals at nontoxic concentrations. In conclusion, venom components from ecto- or endoparasitoid wasps have anti-inflammatory potential on increased immune responses of mammalian cells.

___

  • Tsai, S. H., Chen, Y. C., Chen, L., Wang, Y. M., & Tsai, I. H. (2007). Binding of a venom Lys-49 phospholipase A (2) to LPS and suppression of its effects on Mouse macrophages. Toxicon, 50, 914–922.
  • Park, H. J., Lee, H. J., Choi, M. S., Son, D. J., Song, H. S., Song, M. J., Lee, J. M., Han, S. B., Kim, Y., & Hong, J. T. (2008). JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin. Journal of Inflammation, 29, 5-7. https://doi: 10.1186/1476-9255-5-7
  • Dkhil, M. A., Abdel-Baki, A. S., Al-Quraishi, S., & Al-Khalifa, M. (2010). Anti-inflammatory activity of the venom from samsum ants Pachycondyla sennaarensis. African Journal of Pharmacy and Pharmacology, 4, 115–118.
  • Danneels, E. L., Gerlo, S., Heyninck, K., Van-Craenenbroeck, K., Bosscher, K., Haegeman, G., & Graaf, D.C. (2014). How the Venom from the Ectoparasitoid Wasp Nasonia vitripennis Exhibits Anti-Inflammatory Properties on Mammalian Cell Lines. Plos-One, 9 (5), e96825.
  • Beckage, N. E. (1993). Games parasites play: The dynamic roles of proteins and peptides in the relationship between parasite and host. In N. E. Beckage, S. N. Thompson & B. A. Federici (Eds), Parasites and Pathogens of Insects (pp. 25-57). Academic Press.
  • Thompson S. N. (1993). Redirection of host metabolism and effects on parasite nutrition. In N. E. Beckage, S. N. Thompson & B. A. Federici (Eds), Parasites and Pathogens of Insects (pp. 125-144). Academic Press.
  • Rivers, D. B., Ruggiero, L., & Hayes, M. (2002). The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera: Sarcophagidae). Journal of Insect Physiology, 48, 1053–1064.
  • Rivers, D. B., Uckan, F., Ergin, E., & Keefer, D.A. (2010). Pathological and ultrastructural changes in cultured cells induced by venom from the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Journal of Insect Physiology, 56, 1935–1948.
  • Keenan, B., Uçkan, F., Ergin, E., & Rivers, D. B. (2007). Recent Advances in the Biochemistry, Toxicity, and Mode of Action of Parasitic Wasp Venoms. In D. Rivers & J. Yoder (Eds), Morphological and biochemical changes in cultured cells induced by venom from the endoparasitoid, Pimpla turionellae (Chapter 5, pp. 75-92). Research Signpost, Fort P.O., Trivandrum-695 023, Kerala, India.
  • Asgari, S. & Rivers, D. B. (2011). Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annual Review of Entomology, 56, 313–335.
  • Gueguen, G., Kalamarz, M. E., Ramroop, J., Uribe, J., & Govind, S. (2013). Polydnaviral Ankyrin Proteins Aid Parasitic Wasp Survival by Coordinate and Selective Inhibition of Hematopoietic and Immune NF-kappa B Signaling in Insect Hosts. PLoS Pathogology, 9. https://doi:10.1371/journal.ppat.1003580
  • Zhang, G. M., Schmidt, O., & Asgari, S. A. (2006). Calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Developmental & Comparative Immunology, 30, 756–764.
  • Uçkan, F., Sinan S., Savasci S., & Ergin E. (2004). Determination of venom components from the endoparasitoid wasp Pimpla turionellae L. (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America , 97, 775–780.
  • Ergin, E., Uçkan, F., Rivers, D. B., & Sak, O. (2006). In vivo and in vitro activity of venom from the endoparasitic wasp Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Archives of Insect Biochemistry and Physiology, 61 (2), 87-97.
  • Er, A., Sak, O., Ergin, E., Uçkan, F., & Rivers, D. B. (2011). Venom induced immuno-suppression: An overview of hemocyte mediated responses. Psyche, Article ID 276376, 14 pages. https://doi:10.1155/2011/276376
  • Saba, E., Shafeeq, T., Irfan, M., Lee, Y.Y., Kwon, H. W., Seo, M. G., Park, S. J., Lee, K. Y., & Rhee, M. H. (2017). Anti-Inflammatory Activity of Crude Venom Isolated from Parasitoid Wasp, Bracon hebetor Say. Mediators Inflammatory. https://doi.org/10.1155/2017/6978194
  • Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., & Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science, 284, 1313-1318.
  • Kimbrell, D. A. & Beutler, B. (2001). The evolution and genetics of innate immunity. Nature Reviews Genetics, 2, 256-267.
  • Yamamoto, Y. & Gaynor, R. B. (2001). Therapeutic potential of inhibition of the NFkappa B pathway in the treatment of inflammation and cancer. Journal of Clinical Investigation, 107, 135–142.
  • Kumar, A., Takada, Y., Boriek, A. M., & Aggarwal, B. B. (2004). Nuclear factor-kappa B: its role in health and disease. Journal of Molecular Medicine, 82, 434-448.
  • Di-Donato, J. A., Mercurio, F., & Karin, M. (2012). NF-kappaB and the link between inflammation and cancer. Immunological Reviews, 246, 379-400.
  • Ergin, E., Altuntaş, H., & Uçkan F. (2013). Effects of parasitization and envenomation by the endoparasitic Wasp Pimpla turionellae L. (Hymenoptera: Ichneumonidae) on hemolymph protein profile of its host Galleria mellonella L. (Lepidoptera: Pyralidae). Biological Diversity and Conservation, 6 (1), 62-70.
  • Moreau, S. J. & Asgari, S. (2015). Venom proteins from parasitoid wasps and their biological functions. Toxins, 7 (7), 2385–2412.
  • Parkinson, N. M., & Weaver R. J. (1999). Noxious components of venom from the pupaspecific parasitoid Pimpla hypochondriaca. Journal of Invertebrate Pathology, 73, 74–83.
  • Danneels, E. L., Formesyn, E. M., & de Graaf, D.C. (2015). Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools. Toxins, 7, 2051-2070.
  • Cunha, A. O. S., Mortari, M. R., Oliveira, L., Oliveira, R., Carolino, G., Coutinho-Netto, J., & dos Santos, W. F. (2005). Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comparative Biochemistry and Physiology Part C, 141(1), 50-57.
  • Hoshina, M. M., Santos, L. D., Palma, M. S., & Marin-Morales, M. A. (2013). Cytotoxic, genotoxic/antigenotoxic and mutagenic/ antimutagenic effects of the venom of the wasp Polybia paulista. Toxicon, 72, 64–70.
  • Sisakht, M., Mashkani, B., Bazi, A., Ostadi, H., Zare, M., Avval, F.Z., Sadeghnia, H.R., Mojarad, M., Nadri, M., Ghorbani, A., & Soukhtanloo, M. (2017). Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells. Revista Brasileira de Farmacognosia, 27, 324–328.
  • Im, E. J., Kim, S. J., Hong, S.B., Park, J. K., & Rhee, M. H. (2016). Anti-inflammatory activity of bee venom in BV2 microglial cells: Mediation of MyD88-dependent NF-κB signaling pathway. Evidence-Based Complementary and Alternative, Article ID 3704764. https://doi: 10.1155/2016/3704764
  • Nipate, S.S., Hurali, P.B., & Ghaisas, M.M. (2015). Evaluation of anti-inflammatory, anti-nociceptive, and anti-arthritic 10 Mediators of Inflammation activities of Indian Apis dorsata bee venom in experimental animals: biochemical, histological, and radiological assessment. Immunopharmacology and Immunotoxicology, 37 (2), 171–184.
  • Liu, X., Chen, D., Xie, L., & Zhang, R., (2002). Effect of honeybee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. Journal of Pharmacy and Pharmacology, 54 (8), 1083-1089.
  • Lim, Y. M., Nishizawa, K., Nishi, Y., Tsuda, L., Inoue, Y. H., & Nishida Y. (1999). Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase. Genetics, 153 (2), 763–771.
  • Hatada, E. N., Krappmann, D., & Scheidereit, C. (2000). NF-kappa B and the innate immune response. Current Opinion in Immunology, 12, 52–58.
  • Inoue, H., Tateno, M., Fujimura-Kamada, K., Takaesu, G., Adachi-Yamada, T., Ninomiya-Tsuji, J., Irie, K., Nishida, Y., & Matsumoto, K. A. (2001). Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK. The EMBO Journal, 20 (19), 5421-30.
  • Danneels, E. L., Formesyn, E. M., Hahn, D. A., Denlinger, D. L., Cardoen, D., Wenseleers, T., Schoofs, L., & de Graaf, D.C. (2013). Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochemistry and Molecular Biolology, 43, 1189–1200.