Farklı orijinli doğu kayını Fagus orientalis Lipsky fidanlarının arazideki büyümelerinin karşılaştırılması

Yetişme ortamı koşullarının yöresel olarak çok farklı özelliklere sahip olması nedeniyle yapay gençleştirme ve ağaçlandırma sahalarının bütünüyle optimum hale getirilmesi mümkün olmamaktadır. Buna bağlı olarak tohumun toplandığı alanlar ile fidanın üretildiği ve dikildiği alanlarının ekolojik koşulları dikkate alınmalıdır. Bu çalışma kapsamında Doğu Kayınının Fagus orientalis Lipsky. farklı orijinlerinden toplanan tohumlardan yetiştirilen fidanların arazi performanslarını incelemek amaçlanmıştır. Bunun için ülkemizdeki doğal yayılış alanları temsilen seçilen 11 doğal populasyon kullanılmıştır. Tohumlar Of Orman Fidanlığında raslantı blokları deneme desenine uygun olarak 3 tekrarlı ekilmiştir. Trabzon-Maçka, Trabzon-Çaykara, Düzce-Çiçekli, Giresun-Kulakkaya, Ordu-Akkuş ve KahramanmaraşAndırın populasyonları iki vejetasyon dönemi boyunca fidanlıkta yetiştirildikten sonra Tonya-Kalınçam mevkiindeki 1230 metre yükseltideki deneme alanına populasyon bazında dikilmişlerdir. Sinop-Merkez, Sinop-Ayancık, SamsunKunduz, Samsun-Karapınar ve Karabük-Yenice populasyonları üç vejetasyon dönemi Of Orman fidanlığında yetiştirildikten sonra ağaç bazında aynı araziye dikilmişlerdir. Arazi koşullarında bir vejetasyon dönemi geçtikten sonra fidanlarda populasyon ve ağaç bazında; fidan boyu, kök boğazı çapı ve yan dal sayısı gibi morfolojik ölçümler yapılarak populasyon içi ve arası varyasyonlar belirlenmeye çalışılmıştır. Elde edilen verilerle, SPSS istatistik programı ile varyans analizi yapılarak ölçülen karakterler bakımından populasyonlar içinde ve arasında genetik varyasyonların olduğu belirlenmiştir. Çalışma sonucunda ölçülen karakterlerin birçoğu bakımından populasyonlar içerisindeki varyasyonun, populasyonlar arasındaki varyasyondan daha fazla olduğu tespit edilmiştir. Bunun yanında ölçülen değişkenlere ilişkin olarak oluşan grupları ortaya koymak için hiyerarşik cluster analizi yapılmıştır

Comparison of differently originated oriental beech Fagus orientalis Lipsky seedling growth in field

It is not possible to make artificial regeneration and afforestation areas optimum totally because of the fact that site area conditions have very different characteristics regionally. Based on these ecological conditions where seed origins and application area should be considered. Within the study, it is aimed to examine the land performances of seedlings grown from different origins. For this purpose, 11 natural populations were chosen from natural distribution oriental beech. The seedlings were sowed appropriate to the randomized blocks design with 3 replications. After grown along two vegetation period in nursery, Trabzon-Maçka, Trabzon-Çaykara, Düzce-Çiçekli, Giresun-Kulakkaya, Ordu-Akkuş and Kahramanmaraş-Andırın populations were planted in the 1230 meters altitude experimental forest in Tonya-Kalınçam. Sinop-Merkez, Sinop-Ayancık, Samsun-Kunduz, Samsun-Karapınar and Karabük-Yenice populations were grown in Of forest nursery for along three vegetation period and then they were planted on the same area. After a vegetation period in the area conditions, morphological measurements such as seedling height, root collar diameter and branch number were made on population and tree basis. By making variation analysis with the SPSS 20 statistic program, it was determined that these measurements variations within and among populations. It was found that variations in populations are more than variations among populations in terms of morphological characters. On the other hand, populations were grouped with hierarchical cluster analysis

___

  • Aslan, S. and Uğurlu, S. 1986. Seed and Seedlings Characteristics of Different Pinus brutia Ten., Pinus halepensis Mill. and Pinus elderica Medwed. Provenances. F. Res. Inst. Technical Bulletin No 165, Ankara.
  • Ayan, S., Ünalan, E., Yer, E.N., Sakici, O. E., İslam, A. 2016. Population diversity in Northwest Anatolia Forests in terms of nut characteristics of Turkish hazelnut (Corylus colurna L.) (Kastamonu province), International Multidisciplinary Congress of Eurosia, 11-13 July, 2016, Odesa, Ukraine.
  • Barrière, G., Comps, B., Cuguen, J., Nitsiba, F., Thiebaut, B. 1985. The genetical ecological variability of beech (Fagus sylvatica L) in Europe - an alloenzymatic study: genetic isolations of beechwoods. In: Proc 1st Symp Improvement and Silviculture of Beech. IUFRO Project Group P1 10-00, Grosshansdorf, 24-50.
  • Belletti, P., Lanteri, S. 1996. Allozyme Variation among European Beech (Fagus sylvatica L.) Stands in Piedmont, North-Western Italy, Silvae Genetica, 45.
  • Boydak, M. 1977. Pollen movements in the vertical direction and its importance in implementation in natural populations of Scots pine (Pinus sylvestris L.). Journal of Faculty of Forestry Istanbul University, 27, 2, 226-238.
  • Cuguen, J., Thiebaut, B., Nitsiba, F. and Barrière, G. 1985. Enzymatic variability of beech stands (Fagus sylvatica L) on three scales in Europe: evolutionary mechanisms. In: Genetic Differentiation and Dispersal in Plants (Jacquart P, Heim G, Antonovics J, eds) NATO ASI Series, Montpellier, 17-39.
  • Cuguen, J., Merzeau, D., Thiebaut, B. 1988. Genetic structure of the European beech stands (Fagus sylvatica L.): F- statistics and importance of mating system characteristics in their evolution, Heredity, 60, 91-100.
  • Ertekin, M., Kırdar, E., Ayan, S. 2015. The Effects of Exposure, Elevation and Tree Age on Seed Characteristics of Fagus orientalis Lipsky. South-east Eur for 6 (1): 15-23. DOI: http://dx.doi.org/10.15177/seefor.15-03
  • Gregorius, HR., Krauhaussen, J. and Müller-Starck, G. 1986. Spatial and temporal differentiation among the seeds in a stand of Fagus sylvatica L. Heredity, 56, 255-262.
  • Güney, D. 2009. Morphogenetic Determination of the Some Geographic Variation in Fagus orientalis Lipsky, KTU Institute of Natural Sciences, PhD., Trabzon.
  • Hamrick, J. L., Schnabel, A. 1985. Understanding the genetic structure of plant populations: Some old problems and a new approach. Gregorius, H.-R. (ed.) In Population Genetics in Forestry, Lecture Notes in Biomathematics 60, Springer-Verlag, 50-70.
  • Hiraoka, K. and Tomaru, N. 2009b. Population genetic structure of Fagus japonica revealed by nuclear microsatellite markers, Int. J. Plant Sci. 170,6, 748-758.
  • Işık, K. 1979. Origin Experiments: definition, types and the principles considered in collecting seed. Journal of Forest Engineering, March-April, 7-15.
  • Işık, K. 1988. Importance of local races and genetic contamination problems in our forest tree species, Journal of Forest Engineering, 25, 11, 25-30.
  • Kaya, Z. 1990. Forest Genetic Resources in Turkey: Our National Heritage, Journal of Seedling, General Directorate of Forestry 28, 2-6.
  • Kim, Z. S. 1979. Inheritance of leucine aminopeptidase and acid phosphatase isoenzymes in beech (Fagus sylvatica L). Silvae Genet. 28, 68-71.
  • Konnert, M., 1995. Investigations on the genetic variation of beech (Fagus sylvatica L.) in Bavaria. Silvae Genetica, 44, 346-351.
  • Larsen, A. B., 1996. Genetic structure of populations of beech (Fagus sylvatica L.) in Denmark, Scandinavian Journal of Forest Research, 11, 3, 220-232.
  • Leonardi, S., Menozzi, P. 1995. Genetic variability of Fagus sylvatica L. in Italy: the role of postglacial recolonization. Heredity, 75, 35-44.
  • Millar, C. I. and Marshall, K. A. 1991. Allozyme variation of port-orford-cedar (Chamaecyparis lawsoniana): ımplications for genetic conservation. Forest Sci. 37, 1060-1075.
  • Müller-Starck, G., 1985. Genetic differences between tolerant and sensitive beeches (Fagus sylvatica L) in an environmentally stressed adult forest stand. Silvae Genet. 34, 241-247.
  • Müller-Starck, G. 1989. Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. In: Genetic effects of air pollutants in forest tree populations (Scholz F, Gregorius HR, Rudin D, eds) Springer,Berlin, 127-142.
  • Nielsen, N. C., Jorgensen, F. V. 2003. Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: variation between and within provenances, Forest Ecology and Management, 174, 233-249.
  • Paule, L., Gömöry, D., Vysny, J. 1995. Genetic diversity and differentiation of beech populations in Eastern Europe. In: S. F. MADSEN (Ed.), Genetics and Silviculture of Beech. Forskningserien, 11, 159-167.
  • Sakıcı, O. E., Ayan, S. 2016. Türkiye, Azerbaycan ve Orta Asya Türk Devletlerinin orman varlıkları bakımından karşılaştırılması, Türk Dünyası İlmi Araştırmalar Sempozyumu, 29-30 Mayıs, 2016, Celalabat, Kırgızistan.
  • Stern, K., Roche, L. 1974. Genetics of Forest Ecosystems. Springer-Verlag, Berlin, Heidelberg, New York.
  • Thiebaut, B., Lumaret, R. and Vernet, P., 1982. The bud enzymes of beech (Fagus sylvatica L). Genetic distinction and analysis of polymorphism in several French populations. Silvae Genet, 31, 51-60.
Biyolojik Çeşitlilik ve Koruma-Cover
  • ISSN: 1308-5301
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Ersin YÜCEL