Domates Bitkisinde Lycopersicum esculentum L. Kurşun Kirliliği ile İndüklenen Genotoksisitenin Moleküler ve Populasyon Markörleri ile Değerlendirilmesi

Ağır metal kirliliği bitkilerin gelişim süreci, mineral beslenme, terleme, fotosentez, enzim aktivitesi ve nükleik asit sentezi gibi bir çok alanda farklılaşmalara sebep olan çevresel bir problemdir. Çevresel kirleticilerin bitkiler üzerindeki etkileri çeşitli teknikler kullanılarak belirlenebilir. Rastgele çoğaltılmış polimorfik DNA RAPD yöntemi genetik haritalama, taksonomi, filogeni ve ağır metal kontaminasyonu gibi genotoksik ajanların neden olduğu çeşitli DNA hasarları veya mutasyonlarının belirlenmesinde kullanılan yarı-nicel bir tekniktir. Bu çalışmada, domates Lycopersicum esculentum L. tohumları farklı konsantrasyonlardaki Pb NO3 2 solüsyonu içerisinde çimlendirilmiş ve bu tohumların kuru ağırlık, toplam çözünebilir protein içeriği, kök uzunluğu ve sonuçta engelleyici oranı IR belirlenmiştir. Tohumlar aynı zamanda kurşun solüsyonunun RAPD profilinde yeni bir band oluşumu veya kayboluşu olarak akseden genotoksik etkisini belirlemek amacıyla kullanılmıştır. Kök uzamasının inhibisyonu veya aktivasyonu bitkilerde metal toksisitesinin ilk belirtisi olarak gözlenmiştir. Aynı zamanda toplam çözünebilir protein içeriği artan Pb2+ konsantrasyonundan önemi oranda etkilenmiştir. RAPD band profillerinden ve genomik kalıp stabilitesinden GTS elde edilen veriler populasyon parametreleri ile uyumludur

Assesment of genotoxicity induced by lead pollution in tomato Lycopersicum esculentum by molecular and population markers

Heavy metal contamination is an important environmental problem that may lead to alterations in vital growth processes, mineral nutrition, transpiration, photosynthesis, enzyme activity and nucleic acids. The effects of environmental pollutants on plants can be monitored using various techniques at different levels. Random amplified polymorphic DNA RAPD is a semi-quantitative technique that has been used for genetic mapping, taxonomy, phylogeny and the detection of various kinds of DNA damage and mutations that result from genotoxic agents such as heavy metal contamination. In this study, tomato Lycopersicum esculentum L. seeds that had germinated in various concentrations of Pb NO3 2 solutions were used for measuring population parameters such as dry weight, total soluble protein content, root length and, ultimately, inhibitory rate IR values. The seeds were also used to determine the genotoxic effect of the lead, reflected as the appearance or disappearance of bands in RAPD profiles. Inhibition or activation of root elongation was found to be the first effect of metal toxicity to show up in the plants that were tested. Also, total soluble protein content was significantly affected by increased Pb2+ concentrations. The data obtained from RAPD band profiles and genomic template stability GTS revealed results that were consistent with the population parameters

___

  • Aksoy Körpe, D., Aras, S. 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutation Research. 719: 29–34.
  • Angelis, J., McGuffie, M., MenKe, M., Schubert, I. 2000. Adaptation to Alkylation Damage in DNA Measured by the Comet Assay. Environmental and Molecular Mutagenesis. 36:146–150.
  • Aras, S., Duran, A., Yenilmez, G. 2003. Isolation of DNA for RAPD Analysis From Dry Leaf Material of Some Hesperis L. Specimens. Plant Molecular Biology Reporter. 21: 461-461.
  • Aras, S., Kanlıtepe, Ç., Cansaran-Duman, D., Halıcı, M.G., Beyaztaş, T. 2010. Assessment of air pollution genotoxicity by molecular markers in the exposed samples of Pseudevernia furfuracea (L.) Zopf in the province of Kayseri (Central Anatolia). Journal of Environmental Monitoring. 12: 536-543.
  • Arduini, I., Godbold, D.L., Onnis, A. 1994. Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum. 92: 675-680.
  • Atienzar, F.A., Conradi, M., Evenden, A.J., Jha, A.N., Depledge, M.H. 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology and Chemistry. 18: 2275–2282.
  • Atienzar, F.A., Cordi, B., Donkin, M.B., Evenden, A.J., Jha, A.N., Depledge, M.H. 2000. Comparison of ultraviolet- induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmate. Aquatic Toxicology. 50: 1–12.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 254-284.
  • Cansaran-Duman, D., Atakol, O., Aras, S. 2011. Assessment of air pollution genotoxicity by RAPD in Evernia prunastri L. Ach. from around iron-steel factory in Karabük, Turkey. Journal of Environmental Sciences. 23: 1171-1178.
  • Castano, A., Becerril, C. 2004. In vitro assessment of DNA damage after short-and long-term exposure to benzo (a) pyrene using RAPD and the RTG-2 fish cell line. Mutation Research. 552: 141-151.
  • Chojnacka, K., Chojnacki, A., Gorecka, H., Gorecki, H. 2005. Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment. 337: 175-182.
  • Gupta, M., Sarin, N.B. 2009. Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. Journal of Environmental Sciences. 21: 686-690.
  • Liu, W., Li, P.J., Qi, X.M., Zhou, Q.X., Zheng, L., Sun, T.H. 2005. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere. 61: 158–167.
  • Liu, W., Yang, Y., Zhou, Q., Xie, L., Li, P., Sun, T. 2007. Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere. 67: 1155–1163.
  • Mollema, C., Cole, R.A. 1996. Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops. Entomologia Experimentalis et Applicata. 78:325-333.
  • Munzuroğlu, Ö., Geçkil, H. 2002. Heavy metal effect on seed germination, root elongation, coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology. 43: 203-213.
  • Nedelkoska, T.V., Doran, P.M. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering. 13: 549-561.
  • Nelson, J.R., Lawrence, C.W., Hinkle, D.C. 1996. Thymine-Thymine Dimer Bypass by Yeast DNA Polymerase ζ. Science. 272: 1646-1649.
  • Singh, P.K., Tewari, R.K. 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology. 24: 107-112.
  • Sinha, S., Gupta, M., Chandra, P. 1996. Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environmental Toxicology and Water Quality. 11: 105-116.
  • Soudek, P., Kotyza, J., Lenikusova´, I., Petrova´, S., Benesˇova´, D., Vaneˇk, T. 2009. Accumulation of heavy metals in hydroponically cultivated garlic (Allium sativum L.), onion (Allium cepa L.), leek (Allium porrum L.) and chive (Allium schoenoprasum L.). Journal of Food, Agriculture and Environment. 7: 761–769.
  • Soydam Aydın, S., Gökçe, E., Büyük, İ., Aras, S. 2012. Characterization of Copper and Zinc induced stress on Cucumber (Cucumis sativus L.) by molecular and population parameters. Mutation Research. 746(1): 49-55.
  • Soydam Aydın, S., Başaran , E., Cansaran-Duman, D., Aras, S. 2013. Genotoxic effect of cadmium in okra seedlings: Comperative investigation with population parameters and molecular markers. Journal of Environmental Biology. 34: 985-990.
  • Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K., Egan, J.M. 2006. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. American Journal of Physiology - Endocrinology and Metabolism. 290: 550–559.
  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18: 6531– 6535.