Aşırı su stresinin Arpa’da Hordeum vulgare verim unsurları ve kimyasal bileşenler üzerine etkisi

Bu çalışmada aşırı su basmasının arpada başak ağırlığı, başakta tane ağırlığı, yaprak ve sap kuru ağırlığı, toplam ağırlık, klorofil miktarı, mineral miktarı, amino ve organik asit düzeyleri üzerindeki etkileri belirlenmiştir. Uzayan su basmasına bağlı olarak arpada gelişim geriliklerine ve fotosentez oranında önemli düşüşler belirlenmiş; bunun göstergesi olarak ta başak ağırlığı, başakta tane ağırlığı, yaprak ve sap kuru ağırlığı, toplam kuru ağırlık ve klorofil miktarında önemli düşüşler belirlenmiştir. Uzayan su basmasına bağlı olarak N, P, K, Ca, Mg, Na, Zn ve toplam mineral miktarında önemli düşüşler kaydedilirken; Fe, Cu ve Mn miktarında artışlar kaydedilmiştir. Bu üç elementin Fe, Cu ve Mn fotosentezde önemli görev üstlenmelerinin yanısıra aşırı su basmalarında toksit etki yapacak kadar bir artışa neden olduğu belirlenmiştir. Buna ilaveten uzayan su basmasına bağlı olarak amino ve organik asit seviyelerinde artışlar belirlenmiştir. Okzalik asit, propiyonik asit, butirik asit, laktik asit, sitrik asit, malik asit ve absisik asit miktarlarında önemli artışlar belirlenirken gibberelik asit, salisilik asit, IAA ve toplam organik asit düzeylerinde düşüşler kaydedilmiştir. Sonuç olarak uzayan su basmasına bağlı olarak verim unsurları, mineral miktarları, amino asit ve organik asit miktarlarında önemli değişimler ortaya konmakla birlikte; arpa çeşitlerinden İnce arpa genotipi Kalaycı arpa genetipine göre uzayan su basmasına daha dayanıklı arpa çeşiti olduğu belirlenmiştir

Impact of waterlogging stress on yield components and chemical characteristics of Barley Hordeum vulgare

The aim of this trial was to assess the effect of waterlogging on spike weight, grain weight per spike, dry leave weight, dry culm weight, total weight, contents of chlorophyll and mineral, amino acids and organic acids in barley. Barley under waterlogging stresses exhibited growth reduction and photosynthesis declination as reflected by decline in spike weight grain weight per spike dry leave weight dry culm weight total weight and chlorophyll content. Prolonging waterlogging caused decrease in N, P, K, Ca, Mg, Na, Zn and total amount of minerals; whereas toxic minerals, Fe, Cu and Mn increased. Increased timing in excess water made a considerable increase in levels of amino acids organic acids. While oxalic, propionic, butyric, lactic, citric, malic and abscisic acids increased; decreases were recorded in levels of giberellic, salicylic, indole acetic acids and total organic acids with increasing timing of waterlogging. In conclusion, prolonging waterlogging has significant effect on yield components, levels of minerals, amino acids and organic acids in barley. Ince genotype showed better performance and more resistance to waterlogging than Kalaycı

___

  • Al-Ani, N. K., Al-Zubaidi, F.S., Mohamad, R. H., 2011. Effect of Suaeda aegyptiaca extracts on some microorganisms in vivo and in vitro. J Bio. Life Sci. 2: 16–21.
  • Asha, S., Rao K. N. 2002. Effect of simulated waterlogging on the levels of amino acids in groundnut at the time of sowing. Indian J. Plant Physiol. 7 (3): 288-291.
  • Ashraf, M., Shahbaz, M., Ali, Q. 2013. Drought-Induced Modulation in Growth and Mineral Nutrients in Canola (Brassica napus L.). Pak. J. Bot. 45(1): 93-98.
  • Baque, M. A., M. A. Karim, A. Hamid & H. Tetsushi. 2006. Effects of fertilizer potassium on growth, yield and nutrient uptake of Wheat (Tritcum aestivum) under water stress condition. South pacific Studies, 27: 1.
  • Bhuiya, M. S. U., Kamal, A. M. A., 1994. Developmental stages and grain yield components of wheat. Bangladesh J. Agric. Sci. 21: 335-341.
  • Blum, A., Ebercon, A., 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43-47.
  • Capone, R., Tiwari, B. S., Levine, A. 2004. Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. - Plant Physiol. Biochem. 42: 425-428.
  • Colmer, T. D., Voesenek, L. A. C. J., 2009. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 36: 665–681.
  • Drew, M. C., 1991. Oxygen deficiency in the root environment and plant mineral nutrition,” in Plant Life Under Oxygen Deprivation, M. B. Jackson et al., Ed.: 301–316, Academic Publishing, The Hague, The Netherlands.
  • Düzgüneş, O. Kesici, T. Kavuncu, O. Gürbüz, F. 1987, Research and Experımental Methods (Statistical Methods II), A. Ü. Agricultural Fakulty Pub. No: 1021, Ankara, pp: 295.
  • Evans, L. T., Wardlaw, F. 1976. Aspects of comparative physiology of grain yield in cereals. Adv. Agron. 28: 301-359.
  • Fathi, G. H., Rezaeimoghddam, K. 2000. Path analysis of grain yields and yields components for some wheat cultivars in Ahvaz region. Agricultural Science and Technology. 14(1): 39-48.
  • Frizzi, A., Huang, S., Gilbertson, L.A., Armstrong, T. A., Luethy, M. H., Malvar, T. M. 2008. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. J. Plant Biotechnol. 6: 13–21.
  • Fuchs, Y., Lleberman, M. 1968. Effect of kinetin, IAA and gibberellin on ethylene production and tbeir interaction in growth of seedlings. Pl. Physiol, Lancaster, 43: 2029
  • Gadallah, M. A. A. 1994. The combined effects of acidification stress and kinetin on chlorophyll content, dry matter accumulation and transpiration coefficient in Sorghum bicolor plants. Biol. Plant. 36: 149-153.
  • Gardner, W. K., Flood, R. G. 1993. Less waterlogging damage with long season wheats. Cereal Res. Comm. 21: 337– 343.
  • Gleixner, G., Mügler, I. 2007. Compound-specific hydrogen isotope ratios of biomarkers: Tracing climatic changes in the past. In: Dawson, T. & R. Siegwolf (eds.): Stable isotopes as indicators of environmental change: 249-267.
  • Henderson, J. W. Ricker, R. D., Bidlingmeyer, B. A., Woodward, C. 1999. Amino acid analysis using Zorbax Eclipse- AAA Columns and the Agilent 1200 HPLC.
  • Hocking, P.J., Reicosky, D. C., Meyer, W. S. 1987. Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant Soil. 101: 211-221.
  • Huang, B. 2001. Nutrient Accumulation and Associated Root Characteristics in Response to Drought Stress in Tall Fescue Cultivars. Hortsci. 36(1): 148-152.
  • Jayahar, R. P., 2012, Physiological and Anatomical Implications of Salinity on Rice as a Semi-Aquatic Species. Cambridge Scholars Publishing: 1-5.
  • Johnson, J. R., Cobb, B. G., Drew, M. C., 1994. Hypoxic induction of anoxia tolerance in roots of Adh null Zea mays. Plant Physiol. 105: 61-67.
  • Kumar, B. S. T., Ramesh, B., 2001, Correlation between spike development and internode elongation in barley (Hordeum vulgare L.). Indian J. Agric. Sci. 71 (11): 717-718.
  • Luxmoore, R.J., Fischer, R.A., Stolzy, L.H. 1973. Flooding and soil temperature effects on wheat during grain filling. Agron. J. 65: 361–364.
  • Mengel, K., Kirkby, E. 2001. Principles of plant nutrition. 5th edition, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Mertens, D. AOAC 2005. Official Method 975.03. Metal in Plants and Pet Foods. Official Methods of Analysis, 18th edn. Horwitz, W, and G.W. Latimer, (Eds). Chapter 3, pp 3-4, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA.
  • Najafi, M., Haeri, M., Knox, B.E., Schiesser, W.E., Calvert, P.D., 2012, Impact of signaling microcompartment geometry on GPRC dynamics in live retinal photoreceptors. J Gen. Physiol. 140(3): 249-266.
  • Pang, J.Y., Zhou, M.X., Mendham, N., Shabala, S. 2004. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric Res. 55(8):895–906.
  • Paull. J.G., Cartwright. B., Rathjen. A. J. 1988. Responses of Wheat and Barley Genotypes to Toxic Concentrations of Soil Boron. Euphytica, 39:137-144.
  • Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., Freeling, M. 1984. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. - Proc. nat. Acad. Sci. USA 81: 6029-6033.
  • Sairam., R.K., Srivastava, G.C. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162, 897-904.
  • Sayre, K. D., Van Ginkel, M., Rajaram, S., Ortiz-Monasterio, I. 1994. Tolerance to waterlogging losses in spring bread wheat: effect of time of onset on expression. In Annual Wheat Newsletter: 165–171. Colorado State University, p:40pp.
  • Setter, T. L., Ellis, M., Laureles, E.V., Ella, E.S., Senadhira, D., Mishra, S.B., Sarkarung, S., Datta, S. 1997. Physiology and genetics of submergence tolerance in rice. Ann. Bot. 79: 67–77.
  • Setter, T.L., Waters, I. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 253:1–34.
  • Tabatabai, M.A. 1982. Soil enzymes. In: Methods of Soil Analysis, p. 903 in Part 2, Microbiological and Biochemical Properties. Soil Science Society of America, Madison
  • Trought, M. C. T., Drew, M. C. 1982. Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different soil temperatures. Plant and Soil. 69(3): 311-326.
  • Uddling, J., Gelang-Alfredsson J. Piikki, K., Pleijel, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Res. 91(1): 37-46.
  • Zhou, M.X., Li, H.B., Mendham, N.J., 2007. Combining ability of water logging tolerance in barley. Crop Sci. 47, 278– 284.