An overview of the conventional synthesis of biomass-derived nanocomposites and applications to systems for energy and the environment

An overview of the conventional synthesis of biomass-derived nanocomposites and applications to systems for energy and the environment

Biomass-derived nanocomposites are very tiny carbonated solid materials synthesized by fusing metallic compounds with different types of plant-based materials, either in their raw forms or after processing into other substances such as biochar. This chapter aims to succinctly describe the principles often applied in the literature for the synthesis of biomass-derived nanocomposites. Furthermore, the most common applications of biomass-derived nanocomposites in the areas of sustainability of energy and the environment are summarized. The roles of bio-nanocomposites in the advancement of energy storage systems, supercapacitors, and hydrogen production through fuel cells are in focus for sustainable energy applications. For the environmental sustainability potential, emphasis is placed on the applications of the bio-based nanocomposites for environmental remediation and carbon-capture purposes by mitigating CO2 emission through CO2 sorption and sequestration.

___

  • [1] L. R. G. DeSantis, R. S. Feranec, and B. J. MacFadden, “Effects of Global Warming on Ancient Mammalian Communities and Their Environments,” PLoS One, vol. 4, no. 6, p. e5750, Jun. 2009, [Online]. Available: https://doi.org/10.1371/journal.pone.0005750
  • [2] M. P. McCarthy, M. J. Best, and R. A. Betts, “Climate change in cities due to global warming and urban effects,” Geophys Res Lett, vol. 37, no. 9, May 2010, doi: https://doi.org/10.1029/2010GL042845.
  • [3] M. Davis, A. Moronkeji, M. Ahiduzzaman, and A. Kumar, “Assessment of renewable energy transition pathways for a fossil fuel-dependent electricity-producing jurisdiction,” Energy for Sustainable Development, vol. 59, pp. 243–261, 2020, doi: 10.1016/j.esd.2020.10.011.
  • [4] K. N. Nwaigwe, P. Mutabilwa, and E. Dintwa, “An overview of solar power (PV systems) integration into electricity grids,” Mater Sci Energy Technol, vol. 2, no. 3, pp. 629–633, Dec. 2019, doi: 10.1016/j.mset.2019.07.002.
  • [5] S. D. Ahmed, F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman, and I. M. El-Amin, “Grid Integration Challenges of Wind Energy: A Review,” IEEE Access, vol. 8, no. type 1, pp. 10857–10878, 2020, doi: 10.1109/ACCESS.2020.2964896.
  • [6] J. Oyekale, M. Petrollese, T. Vittorio, and G. Cau, “Conceptual design and preliminary analysis of a CSP-biomass organic Rankine cycle plant,” in 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2018, Guimaraes; Portugal, 2018.
  • [7] C. Acar and I. Dincer, “Review and evaluation of hydrogen production options for better environment,” J Clean Prod, vol. 218, pp. 835–849, 2019, doi: 10.1016/j.jclepro.2019.02.046.
  • [8] J. Zhu, K. Hu, X. Lu, X. Huang, K. Liu, and X. Wu, “A review of geothermal energy resources, development, and applications in China: Current status and prospects,” Energy, vol. 93. Elsevier Ltd, pp. 466–483, Dec. 15, 2015. doi: 10.1016/j.energy.2015.08.098.
  • [9] J. Oyekale, F. Heberle, M. Petrollese, D. Brüggemann, and G. Cau, “Biomass retrofit for existing solar organic Rankine cycle power plants: Conceptual hybridization strategy and techno-economic assessment,” Energy Convers Manag, vol. 196, no. April, pp. 831–845, 2019, doi: 10.1016/j.enconman.2019.06.064.
  • [10] P. J. Dunn, “The importance of Green Chemistry in Process Research and Development,” Chem Soc Rev, vol. 41, no. 4, pp. 1452–1461, 2012, doi: 10.1039/C1CS15041C.
  • [11] C.-J. Li and B. M. Trost, “Green chemistry for chemical synthesis,” Proceedings of the National Academy of Sciences, vol. 105, no. 36, pp. 13197–13202, Sep. 2008, doi: 10.1073/pnas.0804348105.
  • [12] S. Chabba, G. F. Matthews, and A. N. Netravali, “‘Green’ composites using cross-linked soy flour and flax yarns,” Green Chemistry, vol. 7, no. 8, pp. 576–581, 2005, doi: 10.1039/B410817E.
  • [13] G. S. Mann, L. P. Singh, P. Kumar, and S. Singh, “Green composites: A review of processing technologies and recent applications,” Journal of Thermoplastic Composite Materials, vol. 33, no. 8, pp. 1145–1171, Dec. 2018, doi: 10.1177/0892705718816354.
  • [14] B. Zimmerli, M. Strub, F. Jeger, O. Stadler, and A. Lussi, “Composite materials: composition, properties and clinical applications. A literature review.,” Schweiz Monatsschr Zahnmed, vol. 120, no. 11, pp. 972–986, 2010.
  • [15] M. Hasan, J. Zhao, and Z. Jiang, “Micromanufacturing of composite materials: a review,” International Journal of Extreme Manufacturing, vol. 1, no. 1, p. 12004, 2019.
  • [16] N. Bisht, P. More, P. K. Khanna, R. Abolhassani, Y. K. Mishra, and M. Madsen, “Progress of hybrid nanocomposite materials for thermoelectric applications,” Mater Adv, vol. 2, no. 6, pp. 1927–1956, 2021, doi: 10.1039/D0MA01030H.
  • [17] F. Ebrahimi and A. Dabbagh, “A comprehensive review on modeling of nanocomposite materials and structures,” Journal of Computational Applied Mechanics, vol. 50, no. 1, pp. 197–209, 2019, doi: 10.22059/jcamech.2019.282388.405.
  • [18] G. Siqueira, J. Bras, and A. Dufresne, “Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications,” Polymers , vol. 2, no. 4. 2010. doi: 10.3390/polym2040728.
  • [19] M. A. Mhd Haniffa, Y. C. Ching, L. C. Abdullah, S. C. Poh, and C. H. Chuah, “Review of Bionanocomposite Coating Films and Their Applications,” Polymers , vol. 8, no. 7. 2016. doi: 10.3390/polym8070246.
  • [20] M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, and A. K. Mohanty, “Biobased plastics and bionanocomposites: Current status and future opportunities,” Prog Polym Sci, vol. 38, no. 10, pp. 1653–1689, 2013, doi: https://doi.org/10.1016/j.progpolymsci.2013.05.006.
  • [21] T. Wen, X. Wu, S. Zhang, X. Wang, and A. Xu, “Core – Shell Carbon-Coated CuO Nanocomposites : A Highly Stable Electrode Material for Supercapacitors and Lithium-Ion Batteries,” pp. 595–601, 2015, doi: 10.1002/asia.201403295.
  • [22] S. Sekar, A. Talha, A. Ahmed, S. M. Pawar, and Y. Lee, “Applied Surface Science Enhanced water splitting performance of biomass activated carbon- anchored WO 3 nano fl akes,” Appl Surf Sci, vol. 508, no. September 2019, p. 145127, 2020, doi: 10.1016/j.apsusc.2019.145127.
  • [23] L. S. F. Leite, C. M. Ferreira, A. C. Corrêa, F. K. V. Moreira, and L. H. C. Mattoso, “Scaled-up production of gelatin-cellulose nanocrystal bionanocomposite films by continuous casting,” Carbohydr Polym, vol. 238, no. January, p. 116198, 2020, doi: 10.1016/j.carbpol.2020.116198.
  • [24] M. Mahardika, H. Abral, A. Kasim, S. Arief, F. Hafizulhaq, and M. Asrofi, “Properties of cellulose nanofiber/bengkoang starch bionanocomposites: Effect of fiber loading,” Lwt, vol. 116, no. July, 2019, doi: 10.1016/j.lwt.2019.108554.
  • [25] H. Abral, A. S. Anugrah, F. Hafizulhaq, D. Handayani, E. Sugiarti, and A. N. Muslimin, “Effect of nanofibers fraction on properties of the starch based biocomposite prepared in various ultrasonic powers,” Int J Biol Macromol, vol. 116, pp. 1214–1221, 2018, doi: 10.1016/j.ijbiomac.2018.05.067.
  • [26] M. Mahardika, H. Abral, A. Kasim, S. Arief, and M. Asrofi, “Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication,” Fibers, vol. 6, no. 2, pp. 1–12, 2018, doi: 10.3390/fib6020028.
  • [27] K. Xu et al., “Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility,” Compos Sci Technol, vol. 154, no. 2018, pp. 8–17, 2018, doi: 10.1016/j.compscitech.2017.10.022.
  • [28] J. P. S. Morais, M. D. F. Rosa, M. D. S. M. De Souza Filho, L. D. Nascimento, D. M. Do Nascimento, and A. R. Cassales, “Extraction and characterization of nanocellulose structures from raw cotton linter,” Carbohydr Polym, vol. 91, no. 1, pp. 229–235, 2013, doi: 10.1016/j.carbpol.2012.08.010.
  • [29] I. Burgert, N. Gierlinger, and T. Zimmermann, “Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation,” vol. 59, no. 2, pp. 240–246, 2005, doi: doi:10.1515/HF.2005.038.
  • [30] T. Liou, Y. Kai, S. Liu, Y. Lin, S. Wang, and R. Liu, “Environmental Technology & Innovation Green synthesis of mesoporous graphene oxide / silica nanocomposites from rich husk ash : Characterization and adsorption performance,” Environ Technol Innov, vol. 22, p. 101424, 2021, doi: 10.1016/j.eti.2021.101424.
  • [31] T. H. Liou and P. Y. Wang, “Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites,” Waste Management, vol. 108, pp. 51–61, 2020, doi: 10.1016/j.wasman.2020.04.029.
  • [32] T.-H. Liou and M.-H. Lin, “Characterization of graphene oxide supported porous silica for effectively enhancing adsorption of dyes,” Sep Sci Technol, vol. 55, no. 3, pp. 431–443, Feb. 2020, doi: 10.1080/01496395.2019.1577274.
  • [33] J. R. F. Gonçalves et al., “Heat treatment of iron / carbon composites for energy storage : effect on physicochemical and electrochemical properties,” no. 17, pp. 506–510, 2019.
  • [34] P. Zhang, Y. Wu, H. Sun, J. Zhao, Z. Cheng, and X. Kang, “MnO 2 / carbon nanocomposite based on silkworm excrement for high-performance supercapacitors,” vol. 28, no. 10, 2021.
  • [35] C. Gai, N. Zhu, S. K. Hoekman, Z. Liu, W. Jiao, and N. Peng, “Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen- rich syngas production from catalytic reforming of biomass,” Energy Convers Manag, vol. 183, no. November 2018, pp. 474–484, 2019, doi: 10.1016/j.enconman.2018.12.121.
  • [36] M. T. H. Siddiqui et al., “Synthesis and optimization of chitosan supported magnetic carbon bio-nanocomposites and bio-oil production by solvothermal carbonization co-precipitation for advanced energy applications,” vol. 178, 2021, doi: 10.1016/j.renene.2021.06.063.
  • [37] A. R. Puente-santiago, F. Luna-lama, and R. Luque, “Versatile Protein-Templated TiO 2 Nanocomposite for Energy Storage and Catalytic Applications ́ , † , ∥,” 2019, doi: 10.1021/acssuschemeng.8b06349.
  • [38] M.-G. Ma, “Green Synthesis: Properties and Potential Applications in Nanomaterials and Biomass Nanocomposites BT - Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials,” V. A. Basiuk and E. V Basiuk, Eds., Cham: Springer International Publishing, 2015, pp. 119–161. doi: 10.1007/978-3-319-15461-9_5.
  • [39] H. P. S. A. Khalil et al., “Production and modification of nanofibrillated cellulose using various mechanical processes : A review,” Carbohydr Polym, vol. 99, pp. 649–665, 2014, doi: 10.1016/j.carbpol.2013.08.069.
  • [40] N. Jia et al., “Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH-urea aqueous solution,” Mater Lett, vol. 64, no. 20, pp. 2223–2225, 2010, doi: 10.1016/j.matlet.2010.07.029.
  • [41] G. U. O. M. A. MING, J. I. A. NING, M. L. I. SHU, and C. S. U. N. RUN, “Nanocomposites of cellulose/carbonated hydroxyapatite by microwave-assisted fabrication in ionic liquid: characterization and thermal stability,” 2011.
  • [42] N. Jia, S.-M. Li, M.-G. Ma, and R.-C. Sun, “Rapid microwave-assisted fabrication of cellulose/F-substituted hydroxyapatite nanocomposites using green ionic liquids as additive,” Mater Lett, vol. 68, pp. 44–46, 2012.
  • [43] M.-G. Ma, Y.-Y. Dong, L.-H. Fu, S.-M. Li, and R.-C. Sun, “Cellulose/CaCO3 nanocomposites: Microwave ionic liquid synthesis, characterization, and biological activity,” Carbohydr Polym, vol. 92, no. 2, pp. 1669–1676, 2013.
  • [44] M.-G. Ma, F. Deng, K. Yao, and C.-H. Tian, “Microwave-assisted synthesis and characterization of CaCO3 particles-filled wood powder nanocomposites,” Bioresources, vol. 9, no. 3, pp. 3909–3918, 2014.
  • [45] N. Jia, S.-M. Li, M.-G. Ma, R.-C. Sun, and L. Zhu, “Green microwave-assisted synthesis of cellulose/calcium silicate nanocomposites in ionic liquids and recycled ionic liquids,” Carbohydr Res, vol. 346, no. 18, pp. 2970–2974, 2011.
  • [46] S.-M. Li, N. Jia, M.-G. Ma, Z. Zhang, Q.-H. Liu, and R.-C. Sun, “Cellulose–silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property,” Carbohydr Polym, vol. 86, no. 2, pp. 441–447, 2011.
  • [47] Y.-Y. Dong, J. He, S.-L. Sun, M.-G. Ma, L.-H. Fu, and R.-C. Sun, “Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X= Cl, Br),” Carbohydr Polym, vol. 98, no. 1, pp. 168–173, 2013.
  • [48] M.-G. Ma, S.-J. Qing, S.-M. Li, J.-F. Zhu, L.-H. Fu, and R.-C. Sun, “Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO,” Carbohydr Polym, vol. 91, no. 1, pp. 162–168, 2013.
  • [49] K. Rambabu et al., “ScienceDirect Ferric oxide / date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohydrogen,” Int J Hydrogen Energy, vol. 46, no. 31, pp. 16631–16643, 2020, doi: 10.1016/j.ijhydene.2020.06.108.
  • [50] T. Prasankumar, S. Jose, P. M. Ajayan, and M. Ashokkumar, “Functional carbons for energy applications,” Mater Res Bull, vol. 142, no. September 2020, p. 111425, 2021, doi: 10.1016/j.materresbull.2021.111425.