Zemin altı otopark yol yüzeylerinde buzlanma önleyici sistemin hidronik ısıtma kaplaması kullanılarak sayısal olarak modellenmesi

Metropol kentlerde yüksek katlı binalar veya rezidansların kış aylarında Zemin altı otoparklarının giriş ve çıkış alanlarında oluşan kar veya buz nedeniyle araçların otoparka giriş ve çıkışları neredeyse imkansızdır. Bir yol yüzeyindeki kaygan koşulları azaltmak için kimyasal tuz veya kar küreme gibi mekanik olan bazı konveksiyonel yöntemler kullanılmaktadır. Bu yöntemlerin gerek yol altyapılarına gerekse çevresel sorunlara neden olduğundan temiz ve alternatif bir yöntem olan Hidronik Isıtmalı Kaplama (HHP) yönteminin kullanması ön plana çıkmaktadır. HHP yöntemi araçların geçtiği yolun altına yerleştirilmiş ve içinden sıcak akışkan geçen borulardan oluşmaktadır. Bu çalışmada, Zemin altı otopark giriş ve çıkış yollarında oluşacak kar veya buzu önlemek amacıyla HHP sistemi için yeni bir model geliştirilmiştir. Ancak bu yeni önerilen uygulamanın özgünlüğü, ısı kaynağı olarak kazan veya ısı pompası gibi ek bir ısıtma sistemi uygulamak yerine binanın merkezi ısıtma sisteminden faydalanılmasıdır. Zemin otopark giriş ve çıkış alanının altına PEX boruları yerleştirilerek hidronik olarak araç yolunun ısıtılması ve MATLAB’ta geliştirilen yeni bir kod sayesinde meteorolojik verileri kullanarak zamana bağlı üç boyutlu olarak simüle edilmiştir. Zemin otopark giriş ve çıkış yollarında buz ve kar oluşmaması için borular arası mesafe, gömme derinliği, hava sıcaklığı ve akışkan giriş sıcaklığının etkileri incelenmiştir. Ek olarak, farklı hava sıcaklıklarına göre hidronik ısıtma borularının yerleşiminin ve akışkan giriş sıcaklığının optimizasyonu gerçekleştirilmiştir.

Numerical Modelling of Anti-icing System on Underground Car Park Road Surfaces Using Hydronic Heating Pavement

In winter months, it is serious problem for vehicles to enter and exit the car park due to snow or ice formed on the road surface of underground car park of highrise buildings or residences in metropolitan cities. In order to reduce slippery conditions on a road surface, some conventional methods are used that are mechanical, such as chemical salt sprinkling or snow plowing. Since these methods cause both road infrastructures and environmental problems, the use of Hydronic Heating Pavement (HHP) method, which is a more greener and alternative method, comes to the fore. The HHP method consists of PEX pipes placed under underground car park road surfaces and hot fluid passing through them. In this study, a new model has been developed for the HHP system in order to prevent snow or ice formed on the underground car park road surfaces. However, the novelty of proposed model is that instead of implementing an additional heating system such as a boiler or heat pump as the heat source, the central heating system of the building is used. Thanks to a new code developed in MATLAB, using meteorological data, transient 3-D temperature distribution is simulated in the heating of the road surface with PEX pipes placed under the surface of underground car park. The effects of distance between pipes, burial depth, air temperature and fluid inlet temperature on preventing ice and snow formed on road surface of the underground car park are examined. In addition to this, an optimization study is carried out for the placement of PEX pipes and fluid inlet temperature according to different air temperatures.

___

  • [1] J. Norrman, M. Eriksson, and S. Lindqvist, “Relationships between road slipperiness, traffic accident risk and winter road maintenance activity,” Clim. Res., vol. 15, pp. 185–193, 2000.
  • [2] A. K. Andersson, “Winter road conditions and traffic accidents in Sweden and UK: present and future climate scenarios,” Göteborg University, Göteborg , 2010.
  • [3] A. D. W. Nuijten, “Runway temperature prediction, a case study for Oslo Airport, Norway,” Cold Reg. Sci. Technol., vol. 125, pp. 72–84, 2016.
  • [4] M. A. Equiza et al., “Long-term impact of road salt (NACI) on soil and urban trees in Edmonton, Canada,” Urban forestry & urban greening, vol. 21, pp. 16–28, 2017.
  • [5] N. Aghazadeh, M. Nojavan, and A. A. Mogaddam, “Effects of road-deicing salt (NACI) and saline water on water quality in the Urmia area in northwest of Iran,” Arabian journal of geosciences, vol. 5, pp. 565–570, 2012.
  • [6] F. Li, Y. Zhang, Z. Fan, and K. Oh, “Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils,” Bull. Environ. Contam. Toxicol., vol. 94, no. 4, pp. 525–531, 2015.
  • [7] M. Gholikhani, H. Roshani, S. Dessouky, and A. T. Papagiannakis, “A critical review of roadway energy harvesting technologies,” Appl. Energy, vol. 261, no. 114388, p. 114388, 2020.
  • [8] T. Ghalandari, N. Hasheminejad, W. Van den bergh, and C. Vuye, “A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems,” Renew. Energy, vol. 177, pp. 1421–1437, 2021.
  • [9] H. Wang, J. Zhao, and Z. Chen, “Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water,” Energy Convers. Manag., vol. 49, no. 6, pp. 1538–1546, 2008.
  • [10] C. Han and X. (bill) Yu, “Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: A simulation based analysis,” Renew. Energy, vol. 101, pp. 214–224, 2017.
  • [11] A. Balbay and M. Esen, “Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems,” Acta scientiarum technology, vol. 35, pp. 677–685, 2013.
  • [12] W. Zhao, Y. Zhang, L. Li, W. Su, B. Li, and Z. Fu, “Snow melting on the road surface driven by a geothermal system in the severely cold region of China,” Sustainable energy technologies and assessments, vol. 40, 2020.
  • [13] R. Mirzanamadi, C.-E. Hagentoft, and P. Johansson, “Coupling a Hydronic Heating Pavement to a Horizontal Ground Heat Exchanger for harvesting solar energy and heating road surfaces,” Renew. Energy, vol. 147, pp. 447–463, 2020.
  • [14] P. Pascual-Muñoz, D. Castro-Fresno, P. Serrano-Bravo, and A. Alonso-Estébanez, “Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors,” Appl. Energy, vol. 111, pp. 324–332, 2013.
  • [15] P. Pan, S. Wu, Y. Xiao, and G. Liu, “A review on hydronic asphalt pavement for energy harvesting and snow melting,” Renew. Sustain. Energy Rev., vol. 48, pp. 624–634, 2015.
  • [16] W. J. Eugster, “Road and bridge heating using geothermal energy. Overview and examples,” in European geothermal congress, 2007.
  • [17] D. S. N. M. Nasir, B. R. Hughes, and J. K. Calautit, “A study of the impact of building geometry on the thermal performance of road pavement solar collectors,” Energy (Oxf.), vol. 93, pp. 2614–2630, 2015.
  • [18] F. Ling and T. Zhang, “A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water,” Cold Reg. Sci. Technol., vol. 38, no. 1, pp. 1–15, 2004.
  • [19] G. Mihalakakou, “On estimating soil surface temperature profiles,” Energy Build., vol. 34, no. 3, pp. 251–259, 2002.
  • [20] D. J. Duffy, Finite difference methods in financial engineering: A partial differential equation approach, 1st ed. Nashville, TN: John Wiley & Sons, 2013.
  • [21] T. J. Chung, Computational Fluid Dynamics, 2nd ed. Cambridge, England: Cambridge University Press, 2014.